Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 094401    DOI: 10.1088/1674-1056/acde50
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia

Yundong Tang(汤云东)1,†, Ming Chen(陈鸣)1, Rodolfo C.C. Flesch2, and Tao Jin(金涛)3
1 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China;
2 Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil;
3 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
Abstract  Magnetic particle imaging (MPI) technology can generate a real-time magnetic nanoparticle (MNP) distribution image for biological tissues, and its use can overcome the limitations imposed in magnetic hyperthermia treatments by the unpredictable MNP distribution after the intratumoral injection of nanofluid. However, the MNP concentration distribution is generally difficult to be extracted from MPI images. This study proposes an approach to extract the corresponding concentration value of each pixel from an MPI image by a least squares method (LSM), which is then translated as MNP concentration distribution by an interpolation function. The resulting MPI-based concentration distribution is used to evaluate the treatment effect and the results are compared with the ones of two baseline cases under the same dose: uniform distribution and MPI-based distribution considering diffusion. Additionally, the treatment effect for all these cases is affected by the blood perfusion rate, which is also investigated deeply in this study. The results demonstrate that the proposed method can be used to effectively reconstruct the concentration distribution from MPI images, and that the weighted LSM considering a quartic polynomial for interpolation provides the best results with respect to other cases considered. Furthermore, the results show that the uniformity of MNP distribution has a positive correlation with both therapeutic temperature distribution and thermal damage degree for the same dose and a critical power dissipation value in the MNPs. The MNPs uniformity inside biological tissue can be improved by the diffusion behavior after the nanofluid injection, which can ultimately reflect as an improvement of treatment effect. In addition, the blood perfusion rate considering local temperature can have a positive effect on the treatment compared to the case which considers a constant value during magnetic hyperthermia.
Keywords:  magnetic hyperthermia      magnetic nanoparticles distribution      thermal damage      blood perfusion rate  
Received:  06 May 2023      Revised:  27 May 2023      Accepted manuscript online:  14 June 2023
PACS:  44.10.+i (Heat conduction)  
  44.05.+e (Analytical and numerical techniques)  
  87.85.J- (Biomaterials)  
Corresponding Authors:  Yundong Tang     E-mail:  tangyundong@fzu.edu.cn

Cite this article: 

Yundong Tang(汤云东), Ming Chen(陈鸣), Rodolfo C.C. Flesch, and Tao Jin(金涛) Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia 2023 Chin. Phys. B 32 094401

[1] Usov N A and Gubanova E M 2020Nanomaterials 10 1320
[2] Albarqi H A, Demessie A A, Sabei F Y, Moses A S, Hansen M N, Dhagat P, Taratula O R and Taratula O 2002Pharmaceutics 12 1020
[3] Gu Y Y, Yoshikiyo M, Namai A, Bonvin D, Martinez A, Pinol R, Tellez P, Silva N J O, Ahrentorp F, Johansson C, Marco-Brualla J, Moreno-Loshuertos R, Fernandez-Silva P, Cui Y W, Ohkoshi S I and Millan A 2020RSC Adv. 10 28786
[4] Li W Y, Li W T, Li B Q, Dong L J, Meng T H, Huo G, Liang G Y and Lu X G 2021Chin. Phys. B 30 104402
[5] Yu X G, Ding S W, Yang R P, Wu C W and Zhang W 2021Ceram. Int. 47 5909
[6] Abu-Bakr A F and Zubarev A Y 2020Eur. Phys. J. Spec. Top. 229 323
[7] Tang Y D, Wang Y S, Flesch R C C and Jin T 2023J. Phys. D: Appl. Phys. 56 145402
[8] Tang Y D, Zou J, Flesch R C C and Jin T 2022Chin. Phys. B 32 034304
[9] Rytov R A, Bautin V A and Usov N A 2022Sci. Rep. 12 3023
[10] Tang Y D, Zou J, Flesch R C C and Jin T 2023Appl. Math. Model 114 583
[11] Yan X H, Xu Z Y, Chen W H and Pan Y 2021Comput. Biol. Med. 128 104105
[12] Tay Z W, Savliwala S, Hensley D W, Fung K L B, Colson C, Fellows B D, Zhou X Y, Huynh Q, Lu Y, Zheng B, Chandrasekharan P, Rivera-Jimenez S M, Rinaldi-Ramos C M and Conolly S M 2021Small Methods 5 2100796
[13] Tay Z W, Hensley D W, Chandrasekharan P, Zheng B and Conolly S M 2020IEEE Trans. Med. Imaging 39 1724
[14] Sebastian A R, Ryu S H, Ko H M and Kim S H 2019IEEE Access 7 96094
[15] Droigk C, Maass M and Mertins A 2022Phys. Med. Biol. 67 045014
[16] Murase K, Aoki M, Banura N, Nishimoto K, Mimura A, Kuboyabu T and Yabata I 2015OJMI 05 85
[17] Lu Y, Rivera-Rodriguez A, Tay Z W, Hensley D, Fung K L B, Colson C, Saayujya C, Huynh Q, Kabuli L, Fellows B, Chandrasekharan P, Rinaldi C and Conolly S 2020Int. J. Hyperther. 37 141
[18] Zheng B, von See M P, Yu E, Gunel B, Lu K, Vazin T, Schaffer D V, Goodwill P W and Conolly S M 2016Theranostics 6 291
[19] Marco A and Martínez J J 2010Linear Algebra Appl. 433 1254
[20] Wang G J, Li W J, Zhang L P, Sun L J, Chen P, Yu L N and Ning X 2022IEEE Trans. Neural. Netw. Learn. Syst. 33 3264
[21] Dyer S A and He X 2001IEEE Instrum. Meas. Mag. 4 46
[22] Adepitan J O, Usikalu M R and Falayi E O 2019J. Phys. Conf. Ser. 1299 012045
[23] Zhou R G and Wan C 2021Int. J. Theor. Phys. 60 2115
[24] Li J, Su J and Zeng X 2019Comput. Opt. 43 99
[25] Etminan A, Dahaghin A, Emadiyanrazavi S, Salimibani M, Eivazzadeh-Keihan R, Haghpanahi M and Maleki A 2022J. Therm. Biol. 110 103371
[26] Astefanoaei I, Dumitru I, Stancu A and Chiriac H 2014Chin. Phys. B 23 044401
[27] Ding S W, Wu C W, Yu X G, Dai C, Zhang W and Gong J P 2022Magnetochemistry 8 63
[28] Rosensweig R E 2002J. Magn. Magn. Mater. 252 370
[29] Yu X, Mi Y, Wang L C, Li Z R, Wu D A, Liu R S and He S L 2021Chin. Phys. B 30 017503
[30] Polychronopoulos N D, Gkountas A A, Sarris I E and Spyrou L A 2021Appl. Sci. 11 9526
[31] Tang Y D, Zou J, Flesch R C C, Jin T and He M H 2022Chin. Phys. B 31 014401
[32] Kandala S K, Sharma A, Mirpour S, Liapi E and Ivkov R 2021Int. J. Hyperther. 38 611
[33] Astefanoaei I, Dumitru I, Chiriac H and Stancu A 2016IEEE T. Magn. 52 7403105
[34] Attaluri A, Kandala S K, Wabler M, Zhou H, Cornejo C, Armour M, Hedayati M, Zhang Y G, DeWeese T L, Herman C and Ivkov R 2015Int. J. Hyperther. 31 359
[35] Rodrigues H F, Capistrano G, Mello F M, Zufelato N, Silveira-Lacerda E and Bakuzis A F 2017Phys. Med. Biol. 62 4062
[36] He J T, Liu C, Li T, Liu Y W, Wang S C, Zhang J, Chen L, Wang C, Feng Y B, Floris G, Wang Z Q, Zhang X, Zhao L W, Li Y, Shao H B and Ni Y C 2020Int. J. Med. 17 2269
[1] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[2] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[3] Hierarchical lichee-like Fe3O4 assemblies and their high heating efficiency in magnetic hyperthermia
Wen-Yu Li(李文宇), Wen-Tao Li(李文涛), Bang-Quan Li(李榜全), Li-Juan Dong(董丽娟), Tian-Hua Meng(孟田华), Ge Huo(霍格), Gong-Ying Liang(梁工英), and Xue-Gang Lu(卢学刚). Chin. Phys. B, 2021, 30(10): 104402.
[4] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[5] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[6] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[7] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2014, 23(5): 057505.
No Suggested Reading articles found!