Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100203    DOI: 10.1088/1674-1056/aba2da
General Prev   Next  

An improved global-direction stencil based on the face-area-weighted centroid for the gradient reconstruction of unstructured finite volume methods

Ling-Fa Kong(孔令发)1, Yi-Dao Dong(董义道)1,†, Wei Liu(刘伟)1, and Huai-Bao Zhang(张怀宝)2
1 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Abstract  

The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils, the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combining the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore, the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.

Keywords:  unstructured finite volume methods      improved global-direction stencil      grid skewness      face-areaweighted centroid  
Received:  04 March 2020      Revised:  22 June 2020      Accepted manuscript online:  06 July 2020
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  47.11.-j (Computational methods in fluid dynamics)  
  47.11.Df (Finite volume methods)  
Corresponding Authors:  Corresponding author. E-mail: tianyatingxiao@163.com   
About author: 
†Corresponding author. E-mail: tianyatingxiao@163.com
* Project supported by the National Key Project, China (Grant No. GJXM92579).

Cite this article: 

Ling-Fa Kong(孔令发), Yi-Dao Dong(董义道)†, Wei Liu(刘伟), and Huai-Bao Zhang(张怀宝) An improved global-direction stencil based on the face-area-weighted centroid for the gradient reconstruction of unstructured finite volume methods 2020 Chin. Phys. B 29 100203

Fig. 1.  

The process of cell-centered finite volume discretization on triangular cells.

Fig. 2.  

Face-neighbor and vertex-neighbor stencil cells in different layers. The different numbers in these two figures represent the diverse stencil layers (e.g., for vertex-neighbor stencil, the first layer stencil is composed of all cells that share vertices with the central cell, and the second layer stencil consists of cells that share vertices with the first layer stencil). (a) Face-neighbor stencil. (b) Vertex-neighbor stencil.

Fig. 3.  

Local direction stencils on triangular grids with minor aspect ratio. (a) Grid with straight boundary. (b) Grid with curved boundary.

Fig. 4.  

Local direction stencils on triangular grids with high aspect ratio. (a) Grid with straight boundary. (b) Grid with curved boundary.

Fig. 5.  

The global-direction stencils on triangular girds with high aspect ratio. (a) Grid with straight boundary. (b) Grid with curved boundary.

Fig. 6.  

Global-direction stencils at internal field and the curved boundary on high-aspect-ratio triangular grids. (a) Internal field. (b) Curved boundary.

Fig. 7.  

The optimized global-direction stencil cells on grids with the curved boundary and high aspect ratio. (a) Grid 1. (b) Grid 2.

Fig. 8.  

The geometric centroid and face-area-weighted centroid of triangular cells. (a) Geometric centroid. (b) Face-area-weighted centroid.

Fig. 9.  

The grid skewness measure of cells in different aspect ratios.

Fig. 10.  

A typical high-aspect-ratio triangular grid in Cartesian-coordinate system.

Fig. 11.  

The geometric centroid and face-area-weighted centroid with different parameter p on grids with straight and curved boundary respectively. (a) Grid with straight boundary. (b) Grid with curved boundary.

Fig. 12.  

The global-direction stencils combined with geometric centroid and face-area-weighted centroid on regular triangular grid used for the boundary layer type flow. (a) Geometric centroid. (b) Face-area-weighted centroid.

Fig. 13.  

The global-direction stencils combined with geometric centroid and face-area-weighted centroid on triangular grid with the curved boundary. (a) Geometric centroid. (b) Face-area-weighted centroid.

Full name Abbreviation
Vertex-neighbor stencil V-stencil
Face-neighbor stencil F-stencil
Global-direction stencil with geometric centroid (i.e., p = 0) G-stencil (p = 0)
Global-direction stencil with the face-area-weighted centroid and p = 1 G-stencil (p = 1)
Global-direction stencil with the face-area-weighted centroid and p = 2 G-stencil (p = 2)
Table 1.  

The abbreviation of different stencils.

Fig. 14.  

Flow fields of this numerical example. (a) Density. (b) Pressure.

Fig. 15.  

Regular and randomly perturbed triangular grids with AR = 103: (a) regular, (b) randomly perturbed.

Grid name Distribution in x and y directions (x,y ∈ [0, 1] × [0, 0.001]
AR = 102 AR = 5 × 102 AR = 103
vcoa 50 × 5 20 × 10 15 × 15
coa 100 × 10 40 × 20 30 × 30
med 150 × 15 60 × 30 45 × 45
fin 200 × 20 80 × 40 60 × 60
vfin 300 × 30 120 × 60 90 × 90
Table 2.  

The distribution of five sets of background quadrilateral grid cells in different aspect ratios.

Fig. 16.  

L2 and L norms of pressure errors, when the aspect ratio AR = 102: (a) L2 norm, (b) L norm.

Fig. 17.  

The stencil size of different stencil selection methods.

Fig. 18.  

The geometric centroid and face-area-weighted centroid of grid cells.

Different stencils L2 norm of pressure errors L norm of pressure errors
V-stencil 0.000517445 0.00192892
F-stencil 0.000470333 0.00166419
G-stencil (p = 0) 0.000446073 0.00146549
G-stencil (p = 1) 0.000237936 0.000923927
G-stencil (p = 2) 0.000234345 0.000917014
Table 3.  

Pressure errors of different stencils on the vfin grid.

Fig. 19.  

L2 and L norms of pressure errors, when the aspect ratio AR = 103: (a) L2 norm, (b) L norm.

Fig. 20.  

L2 and L norms of pressure errors, when the aspect ratio AR = 103: (a) L2 norm, (b) L norm.

Fig. 21.  

The stencil size of different stencil selection methods.

Fig. 22.  

The geometric centroid and face-area-weighted centroid of grid cells.

Fig. 23.  

The flow field of manufactured boundary layer type flow: (a) μ = 10−6, (b) μ = 10−8.

Fig. 24.  

Regular and randomly perturbed triangular grids with AR = 104: (a) regular, (b) randomly perturbed.

Grid name Distribution in x and x directions (x,y ∈ [0, 1] × [0, 0.001]
AR = 102 AR = 103 AR = 104 AR = 105
vcoa 120 × 10 60 × 20 20 × 30 30 × 30
coa 180 × 15 90 × 30 30 × 45 45 × 45
med 240 × 20 120 × 40 40 × 60 60 × 60
fin 360 × 30 180 × 60 60 × 90 90 × 90
vfin 480 × 40 240 × 80 80 × 120 120 × 120
Table 4.  

The distribution of five sets of background quadrilateral grid cells in different aspect ratios.

Fig. 25.  

L2 and L norms of solution errors, when the aspect ratio AR = 102: (a) L2 norm, (b) L norm.

Fig. 26.  

The stencil size of different stencil selection methods.

Fig. 27.  

The geometric centroid and face-area-weighted centroid of grid cells.

Different stencils L2 norm of solution errors L norm of solution errors
V-stencil 0.000170044 0.00202639
F-stencil 0.00015098 0.00205056
G-stencil (p = 0) 0.00014244 0.00195697
G-stencil (p = 1) 0.0000746072 0.00140981
G-stencil (p = 2) 0.0000734274 0.00143022
Table 5.  

Solution errors of different stencils on the vfin grid.

Fig. 28.  

L2 and L norms of solution errors, when the aspect ratio AR = 105: (a) L2 norm, (b) L norm.

Fig. 29.  

L2 and L norms of solution errors, with the aspect ratio AR = 104: (a) L2 norm, (b) L norm.

Fig. 30.  

The stencil size of different stencil selection methods.

Fig. 31.  

The geometric centroid and face-area-weighted centroid of grid cells.

Fig. 32.  

Flow fields of the supersonic vortex flow: (a) density, (b) mach number.

Fig. 33.  

Regular and randomly perturbed triangular grids with AR ≈ 4: (a) regular, (b) randomly perturbed.

Grid name The distribution in radial and circumferential directions
AR ≈ 2.5 AR ≈ 4 AR ≈ 8
vcoa 20 × 30 10 × 10 20 × 10
coa 30 × 45 20 × 20 40 × 20
med 40 × 60 40 × 40 80 × 40
fin 60 × 90 60 × 60 120 × 60
vfin 80 × 120 80 × 80 160 × 80
Table 6.  

The distribution of background quadrilateral grid cells in radial and circumferential directions on three different grid categories.

Fig. 34.  

L2 and L norms of global pressure errors, and the aspect ratio AR ≈ 2.5: (a) L2 norm, (b) L norm.

Fig. 35.  

The geometric centroid and face-area-weighted centroid of grid cells.

Fig. 36.  

L2 norm of wall pressure errors and the aspect ratio AR ≈ 2.5.

Different stencils L2 norm of global pressure errors L norm of global pressure errors Average stencil size
V-stencil 0.000109909 0.000631396 11.8339
F-stencil 0.000066257 0.000612726 8.896
G-stencil (p = 0) 0.0000541208 0.000457848 6.9375
G-stencil (p = 1) 0.0000454133 0.000366076 6.9375
G-stencil (p = 2) 0.0000427758 0.000331916 6.9375
Table 7.  

Global pressure errors and average stencil size of different stencils on the vfin grid.

Fig. 37.  

L2 and L norms of global pressure errors, and the aspect ratio AR ≈ 8: (a) L2 norm, (b) L norm.

Fig. 38.  

The geometric centroid and face-area-weighted centroid of grid cells and the aspect ratio AR 7≈ 8.

Fig. 39.  

L2 norm of wall pressure errors and the aspect ratio AR ≈ 8.

Different stencils L2 norm of global pressure errors L norm of global pressure errors Average stencil size
V-stencil 0.000261469 0.00144312 11.8008
F-stencil 0.00017859 0.00141231 8.87531
G-stencil (p = 0) 0.000151624 0.00112674 6.925
G-stencil (p = 1) 0.000128455 0.00085544 6.925
G-stencil (p = 2) 0.00012346 0.000787497 6.925
Table 8.  

Global pressure errors of different stencils on the randomly perturbed vfin grid.

Fig. 40.  

L2 and L norms of global pressure errors on randomly perturbed grids, and the aspect ratio AR ≈ 4: (a) L2 norm, (b) L norm.

Fig. 41.  

The geometric centroid and face-area-weighted centroid of grid cells, and the aspect ratio AR ≈ 4.

Fig. 42.  

L2 norm of wall pressure errors on randomly perturbed triangular grids, and the aspect ratio AR ≈ 4.

Different grids Distribution in x and y directions Aspect ratio (AR)
Grid 1 160 × 100 2.5
Grid 2 180 × 240 5.3
Grid 3 90 × 190 8.4
Grid 4 100 × 280 11.2
Table 9.  

Cell aspect ratio and distribution of background quadrilateral grids in x and y directions.

Fig. 43.  

Flow fields of four different stencils with AR = 2.5 and t = 0.2: (a) V-stencil, (b) F-stencil, (c) G-stencil (p = 0), (d) G-stencil (p = 2).

Fig. 44.  

Flow fields of four different stencils with AR = 5.3 and t = 0.2, where “Diverged” in red represents the divergent computing. (a) V-stencil. (b) F-stencil. (c) G-stencil (p = 0). (d) G-stencil (p = 2).

Fig. 45.  

Flow fields of four different stencils with AR = 11.2 and t = 0.2, where “Diverged” in red represents the divergent computing. (a) V-stencil. (b) F-stencil. (c) G-stencil (p = 0). (d) G-stencil (p = 2).

[1]
Mavriplis D J 1997 Annu. Rev. Fluid. Mech. 29 473 DOI: 10.1146/annurev.fluid.29.1.473
[2]
Qin J X, Chen Y M, Deng X G 2019 Chin. Phys. B 28 104701 DOI: 10.1088/1674-1056/ab3f26
[3]
Venkatakrishnan V 1996 AIAA J. 34 533 DOI: 10.2514/3.13101
[4]
Diskin B, Thomas J L 2011 AIAA J. 49 836 DOI: 10.2514/1.J050897
[5]
Diskin B, Thomas J L, Nielsen E J, Nishikawa H, White J A 2010 AIAA J. 48 1326 DOI: 10.2514/1.44940
[6]
Fu Z, Liu K X 2012 Chin. Phys. B 21 040202 DOI: 10.1088/1674-1056/21/4/040202
[7]
Sozer E, Brehm C, Kiris C C 2014 Proceedings of the 52nd Aerospace Sciences Meeting January 13–17, 2014 Convention Center Washington DC 1440 DOI: 10.2514/6.2014-1440
[8]
Jameson A, Mavriplis D J 1986 AIAA J. 24 611 DOI: 10.2514/3.9315
[9]
Mavriplis D J 1988 AIAA J. 26 824 DOI: 10.2514/3.9975
[10]
Zhou Y F, Feng X S 2012 Chin. Phys. Lett. 29 094703 DOI: 10.1088/0256-307X/29/9/094703
[11]
Xiong M, Deng X G, Gao X, Dong Y D, Xu C F, Wang Z H 2018 Comput. Fluids 172 426 DOI: 10.1016/j.compfluid.2018.03.072
[12]
Veluri S P, Roy C J, Luke E A 2012 Comput. Fluids 70 59 DOI: 10.1016/j.compfluid.2012.04.028
[13]
Ghoreyshi M, Seidel J, Bergeron K, Jirasek A, Lofthouse A J, Cummings R M 2015 Proceedings of the 53rd Aerospace Sciences Meeting January 5–9, 2015 Kissimmee Florida 407 DOI: 10.2514/6.2015-0407
[14]
Kallinderis Y, Fotia S 2015 J. Comput. Phys. 280 465 DOI: 10.1016/j.jcp.2014.09.036
[15]
Dannenhoffer J 2012 Proceedings of the 50th Computational Fluid Dynamics Conference January 9–12, 2012 Nashville Tennessee 610 DOI: 10.2514/6.2012-610
[16]
Braaten M, Shyy W 1986 Numer. Heat Transfer B: Fundamentals 9 559 DOI: 10.1080/10407788608913493
[17]
Denner F, Wachem V, Berend G M 2015 J. Comput. Phys. 298 466 DOI: 10.1016/j.jcp.2015.06.008
[18]
Zangeneh R, Ollivier-Gooch C F 2017 Comput. Fluids. 156 590 DOI: 10.1016/j.compfluid.2017.04.020
[19]
Veluri S P 2010 Code verification and numerical accuracy assessment for finite volume CFD codes Ph.D. Dissertation Blacksburg Virginia Polytechnic Institute and State University
[20]
Nishikawa H 2020 J. Comput. Phys. 401 109001 DOI: 10.1016/j.jcp.2019.109001
[21]
Diskin B, Thomas J L 2007 NIA Report: Accuracy analysis for mixed-element finite-volume discretization schemes https://fun3d.larc.nasa.gov/papers/nia_2007_08.pdf
[22]
Barth T 1993 Proceedings of the 31st Aerospace Sciences Meeting January 11–14, 1993 Reno, Nevada 668 DOI: 10.2514/6.1993-668
[23]
Ollivier-Gooch C F, Altena M V 2002 J. Comput. Phys. 181 729 DOI: 10.1006/jcph.2002.7159
[24]
Sejekan C B, Ollivier-Gooch C F 2016 Comput. Fluids 139 216 DOI: 10.1016/j.compfluid.2016.08.002
[25]
Loseille A, Dervieux A, Alauzet F 2010 J. Comput. Phys. 229 2866 DOI: 10.1016/j.jcp.2009.12.021
[26]
Toro E 1999 Riemann Solvers and Numerical Method for Fluid Dynamics - A Practical Introduction Berlin Springer 2
[27]
Barth T, Jespersen D 1989 Proceedings of the 27th Aerospace Sciences Meeting January 8–12, 1989 Reno, Nevada 366 DOI: 10.2514/6.1989-366
[28]
Roe P L 1986 Annu. Rev. Fluid. Mech. 18 337 DOI: 10.1146/annurev.fl.18.010186.002005
[29]
Jalali A, Ollivier-Gooch C F 2017 Comput. Fluids 143 32 DOI: 10.1016/j.compfluid.2016.11.004
[30]
Roy C J 2005 J. Comput. Phys. 205 131 DOI: 10.1016/j.jcp.2004.10.036
[31]
Katz A, Sankaran V 2011 J. Comput. Phys. 230 7670 DOI: 10.1016/j.jcp.2011.06.023
[32]
Roache P J 2002 J. Fluids. Eng. 124 4 DOI: 10.1115/1.1436090
[33]
Park M A, Barral N, Ibanez D, Kamenetskiy D S, Krakos J A, Michal T R, Loseille A 2018 Proceedings of the 56th AIAA Aerospace Sciences Meeting January 8–10, 2018 Kissimmee, Florida 1103 DOI: 10.2514/6.2018-1103
[34]
Dong Y D, Deng X G, Gao X, Xiong M, Wang G X 2018 Comput. Fluids 172 284 DOI: 10.1016/j.compfluid.2018.04.031
[35]
Krivodonova L, Berger M 2006 J. Comput. Phys. 211 492 DOI: 10.1016/j.jcp.2005.05.029
[36]
Gerolymos L, Senechal M, Vallet I 2009 J. Comput. Phys. 228 8481 DOI: 10.1016/j.jcp.2009.07.039
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[3] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[4] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[5] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[6] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[7] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[8] Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force
Jinlian Jiang(姜金连), Wei Xu(徐伟), Ping Han(韩平), and Lizhi Niu(牛立志). Chin. Phys. B, 2022, 31(6): 060203.
[9] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[12] Anti-function solution of uniaxial anisotropic Stoner-Wohlfarth model
Kun Zheng(郑坤), Yu Miao(缪宇), Tong Li(李通), Shuang-Long Yang(杨双龙), Li Xi(席力), Yang Yang(杨洋), Dun Zhao(赵敦), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2022, 31(4): 040202.
[13] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[14] A new algorithm for reconstructing the three-dimensional flow field of the oceanic mesoscale eddy
Chao Yan(颜超), Jing Feng(冯径), Ping-Lv Yang(杨平吕), and Si-Xun Huang(黄思训). Chin. Phys. B, 2021, 30(12): 120204.
[15] Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation
Jing-Wei Sun(孙竟巍), Xu Qian(钱旭), Hong Zhang(张弘), and Song-He Song(宋松和). Chin. Phys. B, 2021, 30(7): 070201.
No Suggested Reading articles found!