Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 094702    DOI: 10.1088/1674-1056/acc78e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Discussion on interface deformation and liquid breakup mechanism in vapor-liquid two-phase flow

Xiang An(安祥)1, Bo Dong(董波)2,†, Ya-Jin Zhang(张雅瑾)2, and Xun Zhou(周训)3
1 School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China;
2 Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China;
3 Institute of Refrigeration and Air Conditioning Technology, Henan University of Science and Technology, Luoyang 471003, China
Abstract  The interface deformation and liquid breakup in vapor-liquid two-phase flow are ubiquitous in natural phenomena and industrial applications. It is crucial to understand the corresponding mechanism correctly. The droplet and liquid ligament dynamic behaviors are investigated in this work by simulating three benchmark cases through adopting a three-dimensional (3D) phase-field-based lattice Boltzmann model, and vapor-liquid phase interface deformation and liquid breakup mechanisms including the capillary instability and end-pinching mechanism are analyzed. The analysis results show that the capillary instability is the driving mechanism of the liquid breakup and the secondary droplet production at a large Weber number, which is different from the Rayleigh-Taylor instability and Kelvin-Helmholtz instability characterizing the vapor-liquid interface deformation. In addition, as another liquid breakup mechanism, the end-pinching mechanism, which describes the back-flow phenomenon of the liquid phase, works at each breakup point, thus resulting in capillary instability on the liquid phase structure. In essence, it is the fundamental mechanism for the liquid breakup and the immanent cause of capillary instability.
Keywords:  liquid breakup      lattice Boltzmann method      capillary instability      end-pinching mechanism  
Received:  27 December 2022      Revised:  15 February 2023      Accepted manuscript online:  25 March 2023
PACS:  47.55.Ca (Gas/liquid flows)  
  47.55.df (Breakup and coalescence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51776031), the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes, China, and the Key Project of Science and Technology Development of Henan Province, China (Grant No. 222102220033).
Corresponding Authors:  Bo Dong     E-mail:  bodong@dlut.edu.cn

Cite this article: 

Xiang An(安祥), Bo Dong(董波), Ya-Jin Zhang(张雅瑾), and Xun Zhou(周训) Discussion on interface deformation and liquid breakup mechanism in vapor-liquid two-phase flow 2023 Chin. Phys. B 32 094702

[1] Szakáll M, Mitra S K, Diehl K and Borrmann S 2010 Atmos. Res. 97 416
[2] He B, Yang S, Qin Z, Wen B and Zhang C 2017 Sci. Rep-UK 7 11841
[3] Wang P, Li J, Wang X, Liu H S, Fan B, Gan P, Guo R F, Ge X Y and Wang M H 2021 Chin. Phys. B 30 027502
[4] Eggers J and Villermaux E 2008 Rep. Prog. Phys. 71 036601
[5] Li Y and Umemura A 2014 J. Appl. Math. Phys. 2 971
[6] Liu F, Kang N and Li Y 2017 Comput. Fluids 154 236
[7] Kim K S and Kim M H 2017 Ocean Eng. 130 531
[8] Dai H H, Xu M H, Guo H Y, Li Y J and Zhang J 2022 Chin. Phys. B 31 120401
[9] Zhou X, Dong B and Li W 2020 Int. J. Aerospace Eng. 2020 1
[10] Wang K W, Wu M W, Tian B H and Xiong S M 2022 Chin. Phys. B 31 098105
[11] Bai L, Shan M L, Yang Y, Su N N, Qian J W and Han Q B 2022 Chin. Phys. B 31 034701
[12] Chen F, Xu A, Zhang Y, Gan Y, Liu B and Wang S 2022 Front. Phys. 17 33505
[13] Wang H, Tian F B and Liu X D 2022 Chin. Phys. B 31 024701
[14] Zu Y, Li A and Wei H 2020 Phys. Rev. E 102 053307
[15] Amirshaghaghi H, Rahimian M and Safari H 2016 Int. Commun. Heat Mass 75 282
[16] Fakhari A and Lee T 2013 Phys. Rev. E 87 023304
[17] Delteil J, Vincent S, Erriguible A and Subra-Paternault P 2011 Comput. Fluids 50 10
[18] Cong H, Qian L, Wang Y and Lin J 2020 Phys. Fluids 32 103307
[19] Chaitanya G S, Sahu K C and Biswas G 2021 Phys. Fluids 33 022110
[20] An X, Dong B, Li W, Zhou X and Sun T 2021 Comput. Math. Appl. 92 76
[21] An X, Dong B, Wang Y, Zhang Y, Zhou X and Li W 2021 Phys. Rev. E 104 045305
[22] Shan M L, Zhu C P, Yao C, Yin C and Jiang X Y 2016 Chin. Phys. B 25 104701
[23] Zuo H, Deng S C and Li H B 2019 Chin. Phys. B 28 030202
[24] Yan B, Xu A G, Zhang G C, Ying Y J and Li H 2013 Front. Phys-Beijing 8 94
[25] Li Q, Luo K H, Kang Q, He Y, Chen Q and Liu Q 2016 Prog. Energ. Combust. 52 62
[26] Xu A G, Zhang G C, Gan Y B, Chen F and Yu X J 2012 Front. Phys. 7 582
[27] Lee T and Lin C L 2005 J. Comput. Phys. 206 16
[28] He X, Chen S and Zhang R 1999 J. Comput. Phys. 152 642
[29] Zu Y and He S 2013 Phys. Rev. E 87 043301
[30] Li Q, Luo K, Gao Y and He Y 2012 Phys. Rev. E 85 026704
[31] Wang H L, Chai Z H, Shi B C and Liang H 2016 Phys. Rev. E 94 033304
[32] Liang H, Liu H, Chai Z and Shi B 2019 Phys. Rev. E 99 063306
[33] Chiu P H and Lin Y T 2011 J. Comput. Phys. 230 185
[34] Sun Y and Beckermann C 2007 J. Comput. Phys. 220 626
[35] Chai Z and Shi B 2020 Phys. Rev. E 102 023306
[36] Chai Z and Zhao T 2012 Phys. Rev. E 86 016705
[37] Guo Z, Zheng C and Shi B 2002 Phys. Rev. E 65 046308
[38] Dong H, Carr W W, Bucknall D G and Morris J F 2007 AIChE J. 53 2606
[39] Wijshoff H 2010 Phys. Rep. 491 77
[40] Rayleigh L 1878 P. Lond. Math. Soc. 1 4
[41] Stone H A, Bentley B and Leal L 1986 J. Fluid Mech. 173 131
[42] Stone H A and Leal L G 1989 J. Fluid Mech. 198 399
[43] Ashgriz N and Mashayek F 1995 J. Fluid Mech. 291 163
[44] Lafrance P 1975 Phys. Fluids 18 428
[45] Rutland D and Jameson G 1970 Chem. Eng. Sci. 25 1689
[46] Yue P, Zhou C and Feng J J 2007 J. Comput. Phys. 223 1
[47] Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G and Viggen E M 2017 The Lattice Boltzmann Method: Principles and Practice (Cham, Switzerland: Springer International Publishing) pp. 1-694
[48] Liu X, Wang C, Zhao Y and Chen Y 2018 Chem. Eng. Sci. 183 215
[49] Liu X, Wang C, Zhao Y and Chen Y 2018 Int. J. Heat Mass Transfer 121 377
[50] Pan K L, Chou P C and Tseng Y J 2009 Phys. Rev. E 80 036301
[1] Application of shifted lattice model to 3D compressible lattice Boltzmann method
Hao-Yu Huang(黄好雨), Ke Jin(金科), Kai Li(李凯), and Xiao-Jing Zheng(郑晓静). Chin. Phys. B, 2023, 32(9): 094701.
[2] Improved contact angle measurement in multiphase lattice Boltzmann
Xing-Guo Zhong(钟兴国), Yang-Sha Liu(刘阳莎), Yi-Chen Yao(姚怡辰), Bing He(何冰), and Bing-Hai Wen(闻炳海). Chin. Phys. B, 2023, 32(5): 054701.
[3] Simulation of gas-liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
Kai Feng(冯凯), Gang Yang(杨刚), and Huichen Zhang(张会臣). Chin. Phys. B, 2023, 32(11): 114703.
[4] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[5] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[6] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[7] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[8] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[9] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[10] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[11] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[12] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[13] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[14] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[15] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
No Suggested Reading articles found!