ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber |
Si-Yu Chen(陈思雨)1, Hai-Qin Deng(邓海芹)1, Wan-Ru Zhang(张万儒)1, Yong-Ping Dai(戴永平)3, Tao Wang(王涛)1, Qiang Yu(俞强)1,3, Can Li(李灿)1, Man Jiang(姜曼)1,2, Rong-Tao Su(粟荣涛)1,2,†, Jian Wu(吴坚)1,‡, and Pu Zhou(周朴)1 |
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; 2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China; 3 CAS Key Laboratory of Nanophotonic Materials and Devices&Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China |
|
|
Abstract We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb2GeTe4 saturable absorber (SA). The Nb2GeTe4 SA triggers passive Q-switching of the laser, and an un-pumped Yb-doped fiber together with a 0.08-nm-bandwidth polarization-maintaining fiber Bragg grating (FBG) acts as an ultra-narrow bandwidth filter to realize single-longitudinal-mode (SLM) oscillation. The devices used in the laser are all kept polarized, so as to ensure linearly polarized laser output. Stable SLM linearly polarized Q-switching operation at 1064.6 nm is successfully achieved, producing a laser with a shortest pulse width of 1.36 μ s, a linewidth of 28.4 MHz, a repetition rate of 28.3 kHz-95.9 kHz, and a polarization extinction ratio of about 30 dB. It is believed that the single-frequency linearly polarized pulsed fiber laser studied in this paper has great application value in gravitational wave detection, beam combining, nonlinear frequency conversion, and other fields.
|
Received: 16 November 2022
Revised: 09 December 2022
Accepted manuscript online: 21 December 2022
|
PACS:
|
42.55.-f
|
(Lasers)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Gd
|
(Q-switching)
|
|
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62275272) and the Training Program for Excellent Young Innovators of Changsha, China (Grant No. KQ2206003). |
Corresponding Authors:
Rong-Tao Su, Jian Wu
E-mail: surongtao@126.com;wujian15203@163.com
|
Cite this article:
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴) Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber 2023 Chin. Phys. B 32 074203
|
[1] Wang Y, Huang W, Wang C, Guo J, Zhang F, Song Y, Ge Y, Wu L, Liu J, Li J and Zhang H 2019 Laser Photon. Rev. 13 1800313 [2] Liu J, Chen Y, Li Y, Zhang H, Zheng S and Xu S 2018 Photon. Res. 6 198 [3] Shakaty A A, Hmood J K, Mahdi B R, Mahdi R I and Al-Azzawi A A 2022 Opt. Laser Technol. 146 107569 [4] Chen X, Xiao Q R, Jin G Y, Yan P and Gong M L 2014 Chin. Phys. B 23 064218 [5] Chen Y, Zhang J, Zhu X, Liu J and Chen W 2019 Opt. Eng. 58 086106 [6] Fu S, Shi W, Feng Y, Zhang L, Yang Z, Xu S, Zhu X, Norwood R A and Peyghambarian N 2017 Journal of the Optical Society of America B 34 A49 [7] Su R, Zhou P, Wang X, Zhang H and Xu X 2012 Opt. Lett. 37 3978 [8] Tao Y, Zhang S, Jiang M, Li C, Zhou P and Jiang Z 2022 Opt. Laser Technol. 145 107519 [9] Xiao H, Dong X L, Zhou P, Xu X J and Zhao G M 2012 Chin. Phys. B 21 034207 [10] Fu S, Zhu X, Zong J, Li M, Chavez-Pirson A, Norwood R A and Peyghambarian N 2022 Opt. Express 30 32600 [11] Xie Z, Shi C, Sheng Q, Fu S, Shi W and Yao J 2020 Opt. Commun. 461 125262 [12] Kato S and Aoki T 2022 Opt. Lett. 47 5000 [13] Feng Z, Yiyu G, Libin J and Qiao W 2021 Laser Photon. Rev. 15 2100059 [14] Liu S, Li G, Zhu F, Huang H, Lu J, Qu J, Li L and Wen Q 2022 Adv. Funct. Mater. 32 2112252 [15] Yeh C H, You W Y, Chen J R, Chow C W and Lin W P 2020 IEEE Photon. J. 12 1 [16] Fang S, Zhou B, Guan Z, Yang C, Zhao Q, Lin W, Feng Z and Xu S 2021 Appl. Opt. 60 10684 [17] Zhang Y, Wang S, Lin W, Mo S, Zhao Q, Yang C, Feng Z, Deng H, Peng M, Yang Z and Xu S 2017 Appl. Phys. Express 10 052502 [18] Zhang Y, Yang C, Feng Z, Deng H, Peng M, Yang Z and Xu S 2016 Opt. Express 24 16149 [19] Li W, Liu H, Zhang J, Yao B, Feng S, Wei L and Mao Q 2017 IEEE Photon. J. 9 1 [20] Wang W, Qi H, Song Z, Guo J, Ni J, Wang C and Peng G 2020 Opt. Commun. 467 125747 [21] Zhao Q, Wu Z, Zhang Z, Lin W, Li C, Guan X, Tan T, Yang C, Cheng H and Gan J 2018 Opt. Express 26 17000 [22] Peng Y, Zhang A, Pan H, Liu Z, Guo T, Zhen C, Li P and Du P 2022 Optics and Laser Technology 150 108001 [23] Ahmad H, Hidayah Abdul Kahar N, Yusoff N, Zharif Samion M, Aisyah Reduan S, Faizal Ismail M, Bayang L, Wang Y, Wang S and Sahu J K 2022 Opt. Fiber Technol. 69 102851 [24] Sun S, Yang F, Sui Z, Zhu M, Chen S, Wang Y, Hong Z, Zhang W, Fu S, Chen X, Wang G and Zhang H 2022 J. Lumin. 250 119064 [25] Li W, Zou J, Huang Y, Wang K, Du T, Jiang S and Luo Z 2018 Photon. Res. 6 C29 [26] Ahmad H, Mansor N H, Reduan S A, Samion M Z, Yusoff N and Bayang L 2022 Optics and Laser Technology 156 108510 [27] Wang Y, Zhu X, Sheng C, Li L, Chen Q, Zong J, Wiersma K, Chavez-Pirson A, Norwood R A and Peyghambarian N 2017 IEEE Photon. Technol. Lett. 29 743 [28] Lai X, Li J, Luo H, Zhu C, Hai Y, Shi Y, Gao Y and Liu Y 2018 Laser Phys. Lett. 15 085109 [29] Wang Y, Wang J and Wen Q 2021 Nanomaterials (Basel) 11 720 [30] Gupta P K, Singh C P, Mukhopadhyay P K and Bindra K S 2022 J. Opt. 24 054012 [31] Kong L, Chu H, Li N, Pan H, Zhao S and Li D 2022 Chin. Opt. Lett. 20 051601 [32] Dai Y, Yu Q, Yang X, Guo K, Zhang Y, Zhang Y, Zhang J, Li J, Chen J, Deng H, Xian T, Wang X, Wu J and Zhang K 2022 ACS Nano 16 4239 [33] Erdogan T 1997 Journal of Lightwave Technology 15 1277 [34] Li Y, Huang L, Gao L, Lan T, Cao Y, Ikechukwu I P, Shi L, Liu Y, Li F and Zhu T 2018 Opt. Express 26 26896 [35] Yin T, Song Y, Jiang X, Chen F and He S 2019 Opt. Express 27 15794 [36] Zhou B K, Gao Y Z and Chen T R 2009 The Principle of Laser, 6th edn. (Beijing: National Defense Industry Press) p. 348 (in Chinese) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|