Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 074203    DOI: 10.1088/1674-1056/acad6d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber

Si-Yu Chen(陈思雨)1, Hai-Qin Deng(邓海芹)1, Wan-Ru Zhang(张万儒)1, Yong-Ping Dai(戴永平)3, Tao Wang(王涛)1, Qiang Yu(俞强)1,3, Can Li(李灿)1, Man Jiang(姜曼)1,2, Rong-Tao Su(粟荣涛)1,2,†, Jian Wu(吴坚)1,‡, and Pu Zhou(周朴)1
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China;
3 CAS Key Laboratory of Nanophotonic Materials and Devices&Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China
Abstract  We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb2GeTe4 saturable absorber (SA). The Nb2GeTe4 SA triggers passive Q-switching of the laser, and an un-pumped Yb-doped fiber together with a 0.08-nm-bandwidth polarization-maintaining fiber Bragg grating (FBG) acts as an ultra-narrow bandwidth filter to realize single-longitudinal-mode (SLM) oscillation. The devices used in the laser are all kept polarized, so as to ensure linearly polarized laser output. Stable SLM linearly polarized Q-switching operation at 1064.6 nm is successfully achieved, producing a laser with a shortest pulse width of 1.36 μ s, a linewidth of 28.4 MHz, a repetition rate of 28.3 kHz-95.9 kHz, and a polarization extinction ratio of about 30 dB. It is believed that the single-frequency linearly polarized pulsed fiber laser studied in this paper has great application value in gravitational wave detection, beam combining, nonlinear frequency conversion, and other fields.
Keywords:  fiber laser      saturable absorber      single-longitudinal-mode      pulsed laser  
Received:  16 November 2022      Revised:  09 December 2022      Accepted manuscript online:  21 December 2022
PACS:  42.55.-f (Lasers)  
  42.55.Wd (Fiber lasers)  
  42.60.Gd (Q-switching)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62275272) and the Training Program for Excellent Young Innovators of Changsha, China (Grant No. KQ2206003).
Corresponding Authors:  Rong-Tao Su, Jian Wu     E-mail:  surongtao@126.com;wujian15203@163.com

Cite this article: 

Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴) Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber 2023 Chin. Phys. B 32 074203

[1] Wang Y, Huang W, Wang C, Guo J, Zhang F, Song Y, Ge Y, Wu L, Liu J, Li J and Zhang H 2019 Laser Photon. Rev. 13 1800313
[2] Liu J, Chen Y, Li Y, Zhang H, Zheng S and Xu S 2018 Photon. Res. 6 198
[3] Shakaty A A, Hmood J K, Mahdi B R, Mahdi R I and Al-Azzawi A A 2022 Opt. Laser Technol. 146 107569
[4] Chen X, Xiao Q R, Jin G Y, Yan P and Gong M L 2014 Chin. Phys. B 23 064218
[5] Chen Y, Zhang J, Zhu X, Liu J and Chen W 2019 Opt. Eng. 58 086106
[6] Fu S, Shi W, Feng Y, Zhang L, Yang Z, Xu S, Zhu X, Norwood R A and Peyghambarian N 2017 Journal of the Optical Society of America B 34 A49
[7] Su R, Zhou P, Wang X, Zhang H and Xu X 2012 Opt. Lett. 37 3978
[8] Tao Y, Zhang S, Jiang M, Li C, Zhou P and Jiang Z 2022 Opt. Laser Technol. 145 107519
[9] Xiao H, Dong X L, Zhou P, Xu X J and Zhao G M 2012 Chin. Phys. B 21 034207
[10] Fu S, Zhu X, Zong J, Li M, Chavez-Pirson A, Norwood R A and Peyghambarian N 2022 Opt. Express 30 32600
[11] Xie Z, Shi C, Sheng Q, Fu S, Shi W and Yao J 2020 Opt. Commun. 461 125262
[12] Kato S and Aoki T 2022 Opt. Lett. 47 5000
[13] Feng Z, Yiyu G, Libin J and Qiao W 2021 Laser Photon. Rev. 15 2100059
[14] Liu S, Li G, Zhu F, Huang H, Lu J, Qu J, Li L and Wen Q 2022 Adv. Funct. Mater. 32 2112252
[15] Yeh C H, You W Y, Chen J R, Chow C W and Lin W P 2020 IEEE Photon. J. 12 1
[16] Fang S, Zhou B, Guan Z, Yang C, Zhao Q, Lin W, Feng Z and Xu S 2021 Appl. Opt. 60 10684
[17] Zhang Y, Wang S, Lin W, Mo S, Zhao Q, Yang C, Feng Z, Deng H, Peng M, Yang Z and Xu S 2017 Appl. Phys. Express 10 052502
[18] Zhang Y, Yang C, Feng Z, Deng H, Peng M, Yang Z and Xu S 2016 Opt. Express 24 16149
[19] Li W, Liu H, Zhang J, Yao B, Feng S, Wei L and Mao Q 2017 IEEE Photon. J. 9 1
[20] Wang W, Qi H, Song Z, Guo J, Ni J, Wang C and Peng G 2020 Opt. Commun. 467 125747
[21] Zhao Q, Wu Z, Zhang Z, Lin W, Li C, Guan X, Tan T, Yang C, Cheng H and Gan J 2018 Opt. Express 26 17000
[22] Peng Y, Zhang A, Pan H, Liu Z, Guo T, Zhen C, Li P and Du P 2022 Optics and Laser Technology 150 108001
[23] Ahmad H, Hidayah Abdul Kahar N, Yusoff N, Zharif Samion M, Aisyah Reduan S, Faizal Ismail M, Bayang L, Wang Y, Wang S and Sahu J K 2022 Opt. Fiber Technol. 69 102851
[24] Sun S, Yang F, Sui Z, Zhu M, Chen S, Wang Y, Hong Z, Zhang W, Fu S, Chen X, Wang G and Zhang H 2022 J. Lumin. 250 119064
[25] Li W, Zou J, Huang Y, Wang K, Du T, Jiang S and Luo Z 2018 Photon. Res. 6 C29
[26] Ahmad H, Mansor N H, Reduan S A, Samion M Z, Yusoff N and Bayang L 2022 Optics and Laser Technology 156 108510
[27] Wang Y, Zhu X, Sheng C, Li L, Chen Q, Zong J, Wiersma K, Chavez-Pirson A, Norwood R A and Peyghambarian N 2017 IEEE Photon. Technol. Lett. 29 743
[28] Lai X, Li J, Luo H, Zhu C, Hai Y, Shi Y, Gao Y and Liu Y 2018 Laser Phys. Lett. 15 085109
[29] Wang Y, Wang J and Wen Q 2021 Nanomaterials (Basel) 11 720
[30] Gupta P K, Singh C P, Mukhopadhyay P K and Bindra K S 2022 J. Opt. 24 054012
[31] Kong L, Chu H, Li N, Pan H, Zhao S and Li D 2022 Chin. Opt. Lett. 20 051601
[32] Dai Y, Yu Q, Yang X, Guo K, Zhang Y, Zhang Y, Zhang J, Li J, Chen J, Deng H, Xian T, Wang X, Wu J and Zhang K 2022 ACS Nano 16 4239
[33] Erdogan T 1997 Journal of Lightwave Technology 15 1277
[34] Li Y, Huang L, Gao L, Lan T, Cao Y, Ikechukwu I P, Shi L, Liu Y, Li F and Zhu T 2018 Opt. Express 26 26896
[35] Yin T, Song Y, Jiang X, Chen F and He S 2019 Opt. Express 27 15794
[36] Zhou B K, Gao Y Z and Chen T R 2009 The Principle of Laser, 6th edn. (Beijing: National Defense Industry Press) p. 348 (in Chinese)
[1] Optimization of large-area YBa2Cu3O7-δ thin films by pulsed laser deposition for planar microwave devices
Pei-Yu Xiong(熊沛雨), Fu-Cong Chen(陈赋聪), Zhong-Pei Feng(冯中沛), Jing-Ting Yang(杨景婷), Yu-Dong Xia(夏钰东), Yue-Feng Yuan(袁跃峰), Xu Wang(王旭), Jie Yuan(袁洁), Yun Wu(吴云), Jing Shi(石兢), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(7): 077402.
[2] Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 μm wavelength region
H Ahmad, B Nizamani, M Z Samion, N Yusoff, and M F Ismail. Chin. Phys. B, 2023, 32(6): 064205.
[3] Sensitivity study of the SiGe heterojunction bipolar transistor single event effect based on pulsed laser and technology computer-aided design simulation
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Jin-Xin Zhang(张晋新),Xiang-Li Zhong(钟向丽), Hong Zhang(张鸿), An-An Ju(琚安安),Ye Liu(刘晔), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(6): 066105.
[4] Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition
Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中). Chin. Phys. B, 2023, 32(4): 047103.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[7] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[8] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[9] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[10] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[11] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[12] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[15] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
No Suggested Reading articles found!