Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044301    DOI: 10.1088/1674-1056/ac9783
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear wave propagation in acoustic metamaterials with bilinear nonlinearity

Shiqi Liang(梁诗琪)1, Jiehui Liu(刘杰惠)1, Yun Lai(赖耘)1,†, and Xiaozhou Liu(刘晓宙)1,2,‡
1 Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Nonlinear phononic crystals have attracted great interest because of their unique properties absent in linear phononic crystals. However, few researches have considered the bilinear nonlinearity as well as its consequences in acoustic metamaterials. Hence, we introduce bilinear nonlinearity into acoustic metamaterials, and investigate the propagation behaviors of the fundamental and the second harmonic waves in the nonlinear acoustic metamaterials by discretization method, revealing the influence of the system parameters. Furthermore, we investigate the influence of partially periodic nonlinear acoustic metamaterials on the second harmonic wave propagation, and the results suggest that pass-band and band-gap can be transformed into each other under certain conditions. Our findings could be beneficial to the band gap control in nonlinear acoustic metamaterials.
Keywords:  bilinear nonlinearity      phononic crystal      band-gap manipulation      nonlinear acoustic metamaterial  
Received:  06 August 2022      Revised:  27 September 2022      Accepted manuscript online:  05 October 2022
PACS:  43.25.+y (Nonlinear acoustics)  
  43.25.Ed (Effect of nonlinearity on velocity and attenuation)  
  43.35.-c (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Key Research and Development program of China (Grant No. 2020YFA0211400), the State Key Program of the National Natural Science of China (Grant No. 11834008), the National Natural Science Foundation of China (Grant No. 12174192), the Fund from the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA202008), and the Fund from the Key Laboratory of Underwater Acoustic Environment, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701).
Corresponding Authors:  Yun Lai, Xiaozhou Liu     E-mail:  laiyun@nju.edu.cn;xzliu@nju.edu.cn

Cite this article: 

Shiqi Liang(梁诗琪), Jiehui Liu(刘杰惠), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙) Nonlinear wave propagation in acoustic metamaterials with bilinear nonlinearity 2023 Chin. Phys. B 32 044301

[1] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734
[2] Yang Z, Mei J, Yang M, Chan N H and Sheng P 2008 Phys. Rev. Lett. 101 204301
[3] Mei J, Ma G, Yang M, Yang Z Y, Wen W J and Sheng P 2012 Nat. Commun. 3 756
[4] Li J and Chan C T 2004 Phys. Rev. E 70 055602
[5] Feng L, Liu X P, Chen Y B, Huang Z P, Mao Y W, Chen Y F, Zi J and Zhu Y Y 2005 Phys. Rev. B 72 033108
[6] Seo Y M, Park J J, Lee S H, Park C M, Kim C K and Lee S H 2012 J. Appl. Phys. 111 023504
[7] Yang M, Ma G C, Yang Z Y and Sheng P 2013 Phys. Rev. Lett. 110 134301
[8] Alagoz S, Alagoz B B, Sahin A and Nur S 2015 Chin. Phys. B 24 046201
[9] Ke M Z, Liu Z Y, Cheng Z G, Li J, Peng P and Shi J 2007 Solid State Commun. 142 177
[10] Li J, Fok L, Yin X B, Bartal G and Zhang X 2009 Nat. Mater. 8 931
[11] Jia H, Ke M Z, Hao R, Ye Y T, Liu F M and Liu Z Y 2010 Appl. Phys. Lett. 97 173507
[12] Yang X S, Yin J, Yu G K, Peng L H and Wang N 2015 Appl. Phys. Lett. 107 193505
[13] Zhu X F, Liang B, Kan W W, Zou X Y and Cheng J C 2011 Phys. Rev. Lett. 106 014301
[14] Li T H, Huang M, Yang J J, Lan Y Z and Sun J 2012 J. Vib. Acoust. 134 051016
[15] Li B L, Li T H, Wu J, Hui M, Yuan G and Zhu Y S 2017 Acoust. Phys. 63 45
[16] Cai C, Yuan Y, Kan W W, Yang J and Zou X Y 2016 Chin. Phys. B 25 124302
[17] Ren C Y, Xiang Z H and Cen Z Z 2011 Chin. Phys. B 20 114301
[18] Liang B, Guo X S, Tu J, Zhang D and Cheng J C 2010 Nat. Mater. 9 989
[19] Fang X, Wen J H, Bonello B, Yin J F and Yu D L 2017 Nat. Commun. 8 1288
[20] Guo X X, Gusev V E, Bertoldi K and Tournat V 2018 J. Appl. Phys. 123 124901
[21] Kulkarni P P and Manimala J M 2019 Acta Mechanica 230 2521
[22] Grinberg I and Matlack K H 2020 Wave Motion 93 102466
[23] Golub M V, Doroshenko O V, Fomenko S I, Wang Y Z and Zhang C Z 2021 International Journal of Solids and Structures 212 1
[24] Jeon G J and Oh J H 2021 Phys. Rev. E 103 012212
[25] Dutta D, Sohn H, Harries K A and Rizzo P 2009 Structural Health Monitoring 8 251
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[3] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
[4] Power flow analysis in a hybrid phononic crystal structure
Hanbei Guo(郭寒贝), Qiang Li(李强), Liubin Zhou(周刘彬), Lei Qiang(强磊). Chin. Phys. B, 2018, 27(3): 036302.
[5] Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals
Han-Bo Shao(邵瀚波), Guo-Ping Chen(陈国平), Huan He(何欢), Jin-Hui Jiang(姜金辉). Chin. Phys. B, 2018, 27(12): 126301.
[6] Acoustic-electromagnetic slow waves in a periodical defective piezoelectric slab
Xiao-juan Li(李小娟), Huan Ge(葛欢), Li Fan(范理), Shu-yi Zhang(张淑仪), Hui Zhang(张辉), Jin Ding(丁劲). Chin. Phys. B, 2017, 26(7): 074302.
[7] Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions
Ting Wang(王婷), Hui Wang(王辉), Mei-Ping Sheng(盛美萍), Qing-Hua Qin(秦庆华). Chin. Phys. B, 2016, 25(4): 046301.
[8] Band structures of elastic waves in two-dimensional eight-fold solid-solid quasi-periodic phononic crystals
Chen A-Li (陈阿丽), Liang Tong-Li (梁同利), Wang Yue-Sheng (汪越胜). Chin. Phys. B, 2015, 24(6): 066101.
[9] Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate
Huang Ping-Ping (黄平平), Yao Yuan-Wei (姚源卫), Wu Fu-Gen (吴福根), Zhang Xin (张欣), Li Jing (李静), Hu Ai-Zhen (胡爱珍). Chin. Phys. B, 2015, 24(5): 054301.
[10] Band structure characteristics of T-square fractal phononic crystals
Liu Xiao-Jian (刘晓健), Fan You-Hua (凡友华). Chin. Phys. B, 2013, 22(3): 036101.
[11] Point defect states of a hollow cylinder in two-dimensional phononic crystal
Gao Xiao-Wei(高晓薇), Chen Shi-Bo(陈世波), Chen Jian-Bing(陈建兵), Zheng Qin-Hong(郑勤红), and Yang Hai(杨海) . Chin. Phys. B, 2012, 21(6): 064301.
[12] Tuning of band-gap of phononic crystals with initial confining pressure
Feng Rong-Xin (冯荣欣), Liu Kai-Xin (刘凯欣). Chin. Phys. B, 2012, 21(12): 126301.
[13] Acoustic band pinning in the phononic crystal plates of anti-symmetric structure
Cai Chen(蔡琛), Zhu Xue-Feng(祝雪丰), Chen Qian(陈谦), Yuan Ying(袁樱), Liang Bin(梁彬), and Cheng Jian-Chun(程建春) . Chin. Phys. B, 2011, 20(11): 116301.
[14] Band gap control of phononic beam with negative capacitance piezoelectric shunt
Chen Sheng-Bing(陈圣兵), Wen Ji-Hong(温激鸿), Yu Dian-Long(郁殿龙), Wang Gang(王刚), and Wen Xi-Sen(温熙森). Chin. Phys. B, 2011, 20(1): 014301.
[15] Investigation of a silicon-based one-dimensional phononic crystal plate via the super-cell plane wave expansion method
Zhu Xue-Feng(祝雪丰), Liu Sheng-Chun(刘盛春), Xu Tao(徐涛), Wang Tie-Hai(王铁海), and Cheng Jian-Chun(程建春). Chin. Phys. B, 2010, 19(4): 044301.
No Suggested Reading articles found!