Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054501    DOI: 10.1088/1674-1056/acb918
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Efficient control of connected and automated vehicles on a two-lane highway with a moving bottleneck

Huaqing Liu(刘华清) and Rui Jiang(姜锐)
Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China
Abstract  This paper investigates the traffic flow of connected and automated vehicles (CAVs) inducing by a moving bottleneck on a two-lane highway. A heuristic rules-based algorithm (HRA) has been used to control the traffic flow upstream of the moving bottleneck. In the HRA, some CAVs in the control zone are mapped onto the neighboring lane as virtual ones. To improve the driving comfort, the command acceleration caused by virtual vehicle is restricted. Comparing with the benchmark in which the CAVs change lane as soon as the lane changing condition is met, the HRA significantly improves the traffic flow: the overtaking throughput as well as the outflow rate increases, the travel delay and the fuel consumption decrease, the comfort level could also be improved.
Keywords:  traffic flow      connected and automated vehicles      moving bottleneck  
Received:  12 December 2022      Revised:  19 January 2023      Accepted manuscript online:  06 February 2023
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  89.40.Bb (Land transportation)  
  05.70.Fh (Phase transitions: general studies)  
  64.60.Cn (Order-disorder transformations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 71931002 and 72288101).
Corresponding Authors:  Rui Jiang     E-mail:  jiangrui@bjtu.edu.cn

Cite this article: 

Huaqing Liu(刘华清) and Rui Jiang(姜锐) Efficient control of connected and automated vehicles on a two-lane highway with a moving bottleneck 2023 Chin. Phys. B 32 054501

[1] Shladover S E, Su D and Lu X Y 2012 Transp. Res. Rec. 2324 63
[2] Milanes V, Shladover S E, Spring J, Nowakowski C, Kawazoe H and Nakamura M 2014 IEEE Trans. Intel. Transp. Syst. 15 296
[3] Ding J S Y, Li L, Peng H and Zhang Y 2020 IEEE Trans. Intel. Trans. Sys. 21 3436
[4] Zeng J W, Qian Y S, Wei X T and Feng X 2018 Chin. Phys. B 27 124502
[5] Tang T Q, Huang H J and Shang H Y 2010 Chin. Phys. B 19 050517
[6] Wan Q, Peng G Q, Li Z B and Inomata F H T 2020 Transp. Res. Part C: Emer. Technol. 117 102682
[7] Liu H, Kan X, Shladover S E, Lu X Y and Ferlis R E 2018 J. Intel. Transp. Sys. 22 263
[8] Hua X D, Wang W and Wang H 2016 Acta Phys. Sin. 65 084503 (in Chinese)
[9] Marinescu D, Curn J, Bouroche M and Cahill V 2012 Proceedings of 2012 15th International IEEE Conference on Intelligent Transportation Systems, September 16-19, 2012, Anchorage, AK, USA, 13115311
[10] Xin Q, Fu R, Ukkusuri S V, Yu S W and Jiang R 2021 Physica A 563 125452
[11] Xie D F, Gao Z Y and Zhao X M 2010 Chin. Phys. B 19 080515
[12] Uno A, Sakaguchi T and Tsugawa S 1999 Proceedings of 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, October 5-8, 1999, Tokyo, Japan, pp. 783-787
[13] Lu X Y and Hedrick J K 2003 Inter. J. Cont. 76 193
[14] Lu X Y, Tan H S, Shladover S E and Hedrick J K 2004 Veh. Sys. Dyn. 41 85
[15] Xu H L, Zhang Y, Cassandras C G, Li L and Feng S 2020 Trans. Res. Part C: Emer. Technol. 120 102773
[16] Rios-Torres J and Malikopoulos A A 2017 IEEE Trans. Intel. Transp. Sys. 18 780
[17] Ntousakis I A, Nikolos I K and Papageorgiou M 2016 Transp. Res. Part C: Emer. Technol. 71 464
[18] Letter C and Elefteriadou L 2017 Transp. Res. Part C: Emer. Technol. 80 190
[19] Dong C Y, Chen Y J, Wang H, Ni D H, Shi X M and Lyu K Y 2022 IEEE Trans. Veh. Tech. 1-15
[20] Zhang T Y, Zhang J X, Lu M Y, Lin W H and Cong Z 2018 Proceedings of 2018 3rd International Conference on Smart City and Systems Engineering, December 29-30, 2018, Xiamen, China, 18638001
[21] Zheng Y and Hansen J H L 2017 IEEE Trans. Intel. Vehicles 2 14
[22] You C X, Lu J B, Filev D and Tsiotras P 2019 Robot. Auto. Sys. 114 1
[23] Guo J Q, Cheng S L and Liu Y Z X 2020 IEEE Trans. Intel. Transp. Sys. 22 1639
[24] Dong C Y, Wang H, Li Y, Wang W and Zhang Z 2019 IEEE Trans. Intel. Trans. Syst. 1-13
[25] Wang B J, Li W, Wen H S and Hu X J 2021 Physica A 573 125852
[26] Zheng Y, Ran B, Qu X and Zhang J 2019 IEEE Trans. Intel. Trans. Syst. 1-10
[27] Ehsan A, Aschkan O, Lily E 2021 Transp. Res. Part C: Emer. Technol. 126 103072
[28] Nagalur Subraveti H H S, Srivastava A, Ahn S, Knoop V L and van Arem B 2021 Transp. Res. Part C: Emer. Technol. 127 103126
[29] Yang C, Chen X D, L X and Li Meng 2022 Transp. Res. Part C: Emer. Technol. 144 103864
[30] Zhu L, Lu L J, Wang X N, Jiang C M and Ye N F 2022 IEEE Trans. Intel. Trans. Syst. 23 8
[31] Gazis D C and Herman R 1992 Transp. Sci. 26 223
[32] Newell G F 1998 Transp. Res. Part B: Method. 32 531
[33] Fang Y, Chen J Z and Peng Z Y 2013 Chin. Phys. B 22 108902
[34] Hu X J, Lin C X, Hao X T, Lu R Y and Liu T H 2021 Physica A 584 126335
[35] Simoni M D and Claudel C G 2017 Transp. Res. Part B: Method. 104 238
[36] Piacentini G, Ferrara A, Papamichail I and Papageorgiou M 2019 Proceedings of 2019 IEEE 58th Conference on Decision and Control, December 11-13, 2019, Nice, France, 19450254
[37] Liu H Q and Jiang R 2021 Physica A 575 126055
[38] Liu H Q, Jiang R, Tian J F and Zhu K X 2023 Chin. Phys. B 32 014501
[39] Arem B V, Driel C J G V and Visser R 2006 IEEE Trans. Intel. Transp. Syst. 7 4
[40] Omae M, Fukuda R, Ogitsu T and Chiang W P 2014 Inter. J. Intel. Trans. Syst. Res. 12 3
[41] Tian B, Wang G Q, Xu Z G, Zhang Y Q and Zhao X M 2021 Vehi. Commun. 29 100333
[42] Zhang Y Q, Tian B, Xu Z G, Gong S Y, Gao Y, Cui Z C and Chen X G 2022 Trans. Res. Part C: Emer. Technol. 142 103766
[43] Wang Y P, Wei L and Chen P 2020 Trans. Res. Part C: Emer. Technol. 111 135
[44] Jia D Y and D Ngoduy 2016 Trans. Res. Part C: Emer. Technol. 68 245
[45] Wang M 2018 Trans. Res. Part C: Emer. Technol. 91 276
[46] Hu X W and Sun J 2019 Trans. Res. Part C: Emer. Technol. 101 111
[47] Luo Y G, Yong Y X, Cao K and Li K Q 2016 Trans. Res. Part C: Emer. Technol. 62 87
[48] Li X P, Cui J X, An S and Parsafard M 2014 Transp. Res. Part B: Method. 70 319
[49] Ma J Q, Li X P, Zhou F, Hu J and BB Park 2017 Transp. Res. Part B: Method. 95 421
[50] Guo Y, Ma J Q, Xiong C F, Li X P, Zhou F and Hao W 2019 Trans. Res. Part C: Emer. Technol. 98 54
[51] Ntousakis I A, Nikolos I K and Papageorgiou M 2016 Transp. Res. Part C: Emer. Technol. 71 464
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[4] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[5] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[6] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[7] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[8] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[9] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[10] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[11] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[12] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[13] A new traffic model on compulsive lane-changing caused by off-ramp
Xiao-He Liu(刘小禾), Hung-Tang Ko(柯鸿堂), Ming-Min Guo(郭明旻), Zheng Wu(吴正). Chin. Phys. B, 2016, 25(4): 048901.
[14] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
[15] A new traffic model with a lane-changing viscosity term
Ko Hung-Tang (柯鸿堂), Liu Xiao-He (刘小禾), Guo Ming-Min (郭明旻), Wu Zheng (吴正). Chin. Phys. B, 2015, 24(9): 098901.
No Suggested Reading articles found!