ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Plasma density transition-based electron injection in laser wake field acceleration driven by a flying focus laser |
Pan-Fei Geng(耿盼飞)1,2, Min Chen(陈民)1,2,†, Xiang-Yan An(安相炎)1,2, Wei-Yuan Liu(刘维媛)1,2, Xin-Zhe Zhu(祝昕哲)1,2, Jian-Long Li(李建龙)1,2, Bo-Yuan Li(李博原)1,2, and Zheng-Ming Sheng(盛政明)1,2 |
1 Key Laboratory for Laser Plasmas(Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 2 Collaborative Innovation Center of IFSA(CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract By using a high-intensity flying focus laser, the dephasingless [Phys. Rev. Lett. 124 134802 (2020)] or phase-locked [Nat. Photon. 14 475 (2020)] laser wakefield acceleration (LWFA) can be realized, which may overcome issues of laser diffraction, pump depletion, and electron dephasing which are always suffered in usual LWFA. The scheme thus has the potentiality to accelerate electrons to TeV energy in a single acceleration stage. However, the controlled electron injection has not been self-consistently included in such schemes. Only external injection was suggested in previous theoretical studies, which requires other accelerators and is relatively difficulty to operate. Here, we numerically study the actively controlled density transition injection in phase-locked LWFA to get appropriate density profiles for amount of electron injection. The study shows that compared with LWFA driven by lasers with fixed focus, a larger plasma density gradient is necessary. Electrons experience both transverse and longitudinal loss during acceleration due to the superluminal group velocity of the driver and the variation of the wakefield structure. Furthermore, the periodic deformation and fracture of the flying focus laser in the high-density plasma plateau make the final injected charge also depend on the beginning position of the density downramp. Our studies show a possible way for amount of electron injection in LWFA driven by flying focus lasers.
|
Received: 16 November 2022
Revised: 16 December 2022
Accepted manuscript online: 27 December 2022
|
PACS:
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11991074, 12225505 and 12135009). The simulations were performed on the π 2.0 supercomputer in the Center for High Performance Computing at Shanghai Jiao Tong University. |
Corresponding Authors:
Min Chen
E-mail: minchen@sjtu.edu.cn
|
Cite this article:
Pan-Fei Geng(耿盼飞), Min Chen(陈民), Xiang-Yan An(安相炎), Wei-Yuan Liu(刘维媛), Xin-Zhe Zhu(祝昕哲), Jian-Long Li(李建龙), Bo-Yuan Li(李博原), and Zheng-Ming Sheng(盛政明) Plasma density transition-based electron injection in laser wake field acceleration driven by a flying focus laser 2023 Chin. Phys. B 32 044101
|
[1] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267 [2] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229 [3] Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M and Zhang J 2020 High Power Laser Part. Beams 32 092001 [4] Li W T, Wang W T, Liu J S, Wang C, Zhang Z J, Qi R, Yu C H, Li R X and Xu Z Z 2015 Chin. Phys. B 24 015205 [5] Zhang G B, Hafz N A M, Ma Y Y, Qian L J, Shao F Q and Sheng Z M 2016 Chin. Phys. Lett. 33 095202 [6] Malka V, Fritzler S, Lefebvre E, Aleonard M M, Burgy F, Chambaret J P, Chemin J F, Krushelnick K, Malka G, Mangles S P D, Najmudin Z, Pittman M, Rousseau J P, Scheurer J N, Walton B and Dangor A E 2002 Science 298 1596 [7] Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B and Hooker S M 2006 Nat. Phys. 2 696 [8] Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Toth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R and Esarey E 2014 Phys. Rev. Lett. 113 245002 [9] Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P and Leemans W P 2019 Phys. Rev. Lett. 122 084801 [10] Leemans W and Esarey E 2009 Phys. Today 62 44 [11] Schroeder C B, Esarey E, Geddes C G R, Benedetti C and Leemans W P 2010 Phys. Rev. ST Accel. Beams 13 101301 [12] Steinke S, van Tilborg J, Benedetti C, Geddes C G R, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E and Leemans W P 2016 Nature 530 190 [13] Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B and Zhang J 2018 Phys. Rev. Lett. 120 154801 [14] Guillaume E, Dopp A, Thaury C, Phuoc K T, Lifschitz A, Grittani G, God- det J P, Tafzi A, Chou S W, Veisz L and Malka V 2015 Phys. Rev. Lett. 115 155002 [15] Zhu X Z, Chen M, Li B Y, Liu F, Ge X L, Sheng Z M and Zhang J 2022 Phys. Plasmas 29 013101 [16] Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Lu L, Yuan X H, Yan W C, Chen M, Chen L M, Sheng Z M and Zhang J 2022 Acta Phys. Sin. 71 095202 (in Chinese) [17] Marie A S, Gobert O and Quere F 2017 Optica 4 1298 [18] Froula D H, Turnbull D, Davies A S, Kessler T J, Haberberger D, Palastro J P, Bahk S W, Begishev I A, Boni R, Bucht S, Katz J and Shaw J L 2018 Nat. Photon. 12 262 [19] Debus A, Pausch R, Huebl A, Steiniger K, Widera R, Cowan T E, Schramm U and Bussmann M 2019 Phys. Rev. X 9 031044 [20] Shalloo R J and Mangles S P D 2020 Nat. Photon. 14 470 [21] Caizergues C, Smartsev S, Malka V and Thaury C 2020 Nat. Photon. 14 475 [22] Palastro J P, Shaw J L, Franke P, Ramsey D, Simpson T T and Froula D H 2020 Phys. Rev. Lett. 124 134802 [23] Smartsev S, Caizergues C, Oubrerie K, et al. 2019 Opt. Lett. 44 3414 [24] Oubrerie K, Andriyash I A, Lahaye R, Smartsev S, Malka V and Thaury C 2022 J. Opt. 24 045503 [25] Schmid K, Buck A, Sears C M S, Mikhailova J M, Tautz R, Herrmann D, Geissler M, Krausz F and Veisz L 2010 Phys. Rev. ST Accel. Beams 13 091301 [26] Massimo F, Lifschitz A F, Thaury C and Malka V 2017 Plasma Phys. Control. Fusion 59 085004 [27] Massimo F, Lifschitz A F, Thaury C and Malka V 2018 Plasma Phys. Control. Fusion 60 034005 [28] Wang T and Wang X F 2016 Acta Phys. Sin. 65 044102 (in Chinese) [29] Chen M, Sheng Z M, Ma Y Y and Zhang J 2006 J. Appl. Phys. 99 056109 [30] Pak A, Marsh K A, Martins S F, Lu W, Mori W B and Joshi C 2010 Phys. Rev. Lett. 104 025003 [31] Cui Y, Zhang G B, Ma Y Y, Yang X H, Mu J Y, Yao H B, Zi M, Zhou J, Yang J Q, Hu L X and Tian L C 2021 Chin. Phys. B 30 105201 [32] Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S and Veisz L 2013 Phys. Rev. Lett. 110 185006 [33] Lehe R, Kirchen M, Andriyash I A, Godfrey B B and Vay J L 2016 Comput. Phys. Commun. 203 66 [34] Geng P F, Chen M, Zhu X Z, Liu W Y, Sheng Z M and Zhang J 2022 Phys. Plasmas 29 112301 [35] Oubrerie K, Leblanc A, Kononenko O, et al. 2022 Light Sci. Appl. 11 180 [36] Fan Q P, Wen S L, Wang S Y, Yang Z H, Chen Y, Liu D X and Wei L 2021 Phys. Scr. 96 065508 [37] Cui Z, Kang J, Guo A, Zhu H, et al. 2019 Opt. Express 27 16812 [38] Sun B, Salter P S and Booth M J 2015 Opt. Express 23 19348 [39] Fan Q P, Wang S Y, Wei L, Yang Z H, Zhang Q Q, Chen Y, Wu Y Z and Cao L F 2019 Opt. Commun. 453 124342 [40] Sochacki J, Kotodziejczyk A, Jaroszewicz Z and Bara S 1992 Appl. Opt. 31 5326 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|