|
|
The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory |
Xuan-Ran Zhu(朱轩然)1,†, Yun-Xian Chen(陈芸仙)2,‡, Ping-Hui Mou(牟平辉)2,§, and Ke-Jian He(何柯腱)3,¶ |
1 Chongqing College of Mobile Communication, Chongqing 401520, China; 2 Physics and Space College, China West Normal University, Nanchong 637000, China; 3 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China |
|
|
Abstract In the context of Rastall gravity, the shadow and observation intensity casted by the new Kiselev-like black hole with dust field have been numerically investigated. In this system, the Rastall parameter and surrounding dust field structure parameter have considerable consequences on the geometric structure of spacetime. Considering the photon trajectories near the black hole, we investigate the variation of the radii of photon sphere, event horizon and black hole shadow under the different related parameters. Furthermore, taking into account two different spherically symmetric accretion models as the only background light source, we also studied the observed luminosity and intensity of black holes. For the both spherical accretions background, the results show that the decrease or increase of the observed luminosity depends on the value range of relevant parameters, and the promotion effect is far less obvious than the attenuation effect on the observed intensity. One can find that the inner shadow region and outer bright region of the black hole wrapped by infalling accretion are significantly darker than those of the static model, which is closely related to the Doppler effect. In addition, the size of the shadow and the position of the photon sphere are always the same in the two accretion models, which means that the black hole shadow depend only on the geometry of spacetime, while the observation luminosity is affected by the form of accretion material and the related spacetime structure.
|
Received: 04 March 2022
Revised: 04 March 2022
Accepted manuscript online: 12 May 2022
|
PACS:
|
04.50.Kd
|
(Modified theories of gravity)
|
|
04.70.-s
|
(Physics of black holes)
|
|
04.40.Nr
|
(Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875095 and 11903025) and Basic Research Project of Science and Technology Committee of Chongqing (Grant No. cstc2018jcyjA2480). |
Corresponding Authors:
Xuan-Ran Zhu, Yun-Xian Chen, Ping-Hui Mou, Ke-Jian He
E-mail: xuanranzhu@126.com;cyx17765580321@163.com;mph2022@163.com;kjhe94@163.com
|
Cite this article:
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱) The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory 2023 Chin. Phys. B 32 010401
|
[1] Abbott B P, et al. 2016 Phys. Rev. Lett. 116 241103 [2] Abbott B P, et al. 2016 Phys. Rev. Lett. 116 241102 [3] Abbott B P, et al. 2016 Phys. Rev. Lett. 116 061102 [4] Akiyama K, et al. 2019 Astrophys. J. 875 L1 [5] Akiyama K, et al. 2019 Astrophys. J. Lett. 875 L4 [6] Akiyama K, et al. 2019 Astrophys. J. Lett. 875 L5 [7] Akiyama K, et al. 2019 Astrophys. J. Lett. 875 L6 [8] Synge J L 1966 Mon. Not. Roy. Astron. Soc. 131 463 [9] Luminet J P 1979 Astron. Astrophys. 75 228 [10] Bardeen J M 1972 Timelike and null geodesics in the Kerr metric, in Black Holes (Les Astres Occlus: Les Houches) pp. 215-239 [11] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Oxford University Press) [12] Falcke H, Melia F and Agol E 2000 Astrophys. J. 528 L13 [13] Shaikh R, Kocherlakota P, Narayan R and Joshi P S 2019 Mon. Not. Roy. Astron. Soc. 482 52 [14] Banerjee I, Chakraborty S and SenGupta S 2020 Phys. Rev. D 101 041301 [15] Vagnozzi S and Visinelli L 2019 Phys. Rev. D 100 024020 [16] Vagnozzi S, Bambi C and Visinelli L 2020 Class. Quant. Grav. 37 087001 [17] Safarzadeh M, Loeb A and Reid M 2019 Mon. Not. Roy. Astron. Soc. 488 L90 [18] Davoudiasl H and Denton P B 2019 Phys. Rev. Lett. 123 021102 [19] Roy R and Yajnik U A 2020 Phys. Lett. B 803 135284 [20] Chen Y F, Shu J, Xue X, Yuan Q and Zhao Y 2020 Phys. Rev. Lett. 124 061102 [21] Amarilla L, Eiroa E F and Giribet G 2010 Phys. Rev. D 81 124045 [22] Li Z L and Bambi C 2014 JCAP 01 041 [23] Grenzebach A, Perlick V and Lämmerzahl C 2014 Phys. Rev. D 89 124004 [24] Contreras E, Rincón Á, Panotopoulos G, Bargue ño P and Koch B 2020 Phys. Rev. D 101 064053 [25] Wei S W and Liu Y X 2021 Eur. Phys. J. Plus 136 436 [26] Hu Z Z, Zhong Z, Li P C, Guo M Y and Chen B 2021 Phys. Rev. D 103 044057 [27] Guo M Y and Li P C 2020 Eur. Phys. J. C 80 588 [28] Chang Z and Zhu Q H 2020 Phys. Rev. D 102 044012 [29] Guo Y and Miao Y G 2020 Phys. Rev. D 102 084057 [30] Long F, Wang J C, Chen S B and Jing J L 2019 JHEP 10 269 [31] Guo H, Liu H, Kuang X M and Wang B 2020 Phys. Rev. D 102 124019 [32] Wei S W and Liu Y X 2013 JCAP 11 063 [33] Wei S W, Cheng P, Zhong Y and Zhou X N 2015 JCAP 08 004 [34] Huang Y, Chen S B and Jing J L 2016 Eur. Phys. J. C 76 594 [35] Wang H M, Xu Y M and Wei S W 2019 JCAP 03 046 [36] Neves J C S 2020 Eur. Phys. J. C 80 717 [37] Chen D Y, Gao C H, Liu X M and Yu C Y 2021 Eur. Phys. J. C 81 700 [38] Çimdiker İ, Demir D and Övgün A 2021 Phys. Dark Univ. 34 100900 [39] Javed W, Hamza A and Övgün A 2021 Universe 7 385 [40] Okyay M and Övgün A 2022 JCAP 01 009 [41] Porth O, et al. 2019 Astrophys. J. Suppl. 243 26 [42] Narayan R, Johnson M D and Gammie C F 2019 Astrophys. J. 885 L33 [43] Cunha P V P, Eiró N A, Herdeiro C A R and Lemos J P S 2020 JCAP 2003 035 [44] Zeng X X, Zhang H Q and Zhang H B 2020 Eur. Phys. J. C 80 872 [45] Qin X, Chen S B and Jing J L 2021 Class. Quant. Grav. 38 115008 [46] Gralla S E, Holz D R and Wald R M 2019 Phys. Rev. D 100 024018 [47] Zeng X X and Zhang H Q 2020 Eur. Phys. J. C 80 1058 [48] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D 104 024003 [49] Peng J, Guo M Y and Feng X H 2021 Chin. Phys. C 45 085103 [50] He K J, Tan S C and Li G P 2022 Eur. Phys. J. C 82 81 [51] Li G P and He K J 2021 Eur. Phys. J. C 81 1018 [52] Zeng X X, He K J and Li G P 2022 Sci. China Phys. Mech. Astron. 65 290411 [53] Zeng X X, Li G P and He K J 2022 Nucl. Phys. B 974 115639 [54] Li G P and He K J 2021 JCAP 06 037 [55] Peng J, Guo M Y and Feng X H 2021 Phys. Rev. D 104 124010 [56] Gralla S E and Lupsasca A 2020 Phys. Rev. D 101 044031 [57] He K J, Guo S, Tan S C and Li G P 2022 Chin. Phys. C 46 085106 [58] Guo S, Li G R and Liang E W 2022 Phys. Rev. D 105 023024 [59] Zhu Y N and Wang T 2021 Phys. Rev. D 104 104052 [60] Guerrero M, Olmo G J, Rubiera-Garcia D and Gómez D S C 2021 JCAP 08 036 [61] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D 104 044049 [62] Hou Y H, Guo M Y and Chen B 2021 Phys. Rev. D 104 024001 [63] Saurabh K and Jusufi K 2021 Eur. Phys. J. C 81 490 [64] Rastall P 1972 Phys. Rev. D 6 3357 [65] Rastall P 1976 Can. J. Phys. 54 66 [66] Heydarzade Y and Darabi F 2017 Phys. Lett. B 771 365 [67] Pourhassan B and Upadhyay S 2021 Eur. Phys. J. Plus 136 311 [68] Lobo I P, Moradpour H, Morais Graça J P and Salako I G 2018 Int. J. Mod. Phys. D 27 1850069 [69] Kumar R, Singh B P, Ali M S and Ghosh S G 2021 Phys. Dark Univ. 34 100881 [70] Soroushfar S, Saffari R and Upadhyay S 2019 Gen. Rel. Grav. 51 130 [71] Lobo I P, Richarte M G, Morais Graça J P and Moradpour H 2020 Eur. Phys. J. Plus 135 550 [72] Gogoi D J and Goswami U D 2021 Phys. Dark Univ. 33 100860 [73] Guo S, He K J, Li G R and Li G P 2021 Class. Quant. Grav. 38 165013 [74] Kiselev V V 2003 Class. Quant. Grav. 20 1187 [75] Vikman A 2005 Phys. Rev. D 71 023515 [76] Jaroszynski M and Kurpiewski A 1997 Astron. Astrophys. 326 419 [77] Bambi C 2013 Phys. Rev. D 87 107501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|