Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010401    DOI: 10.1088/1674-1056/ac6ee0
GENERAL Prev   Next  

The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory

Xuan-Ran Zhu(朱轩然)1,†, Yun-Xian Chen(陈芸仙)2,‡, Ping-Hui Mou(牟平辉)2,§, and Ke-Jian He(何柯腱)3,¶
1 Chongqing College of Mobile Communication, Chongqing 401520, China;
2 Physics and Space College, China West Normal University, Nanchong 637000, China;
3 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China
Abstract  In the context of Rastall gravity, the shadow and observation intensity casted by the new Kiselev-like black hole with dust field have been numerically investigated. In this system, the Rastall parameter and surrounding dust field structure parameter have considerable consequences on the geometric structure of spacetime. Considering the photon trajectories near the black hole, we investigate the variation of the radii of photon sphere, event horizon and black hole shadow under the different related parameters. Furthermore, taking into account two different spherically symmetric accretion models as the only background light source, we also studied the observed luminosity and intensity of black holes. For the both spherical accretions background, the results show that the decrease or increase of the observed luminosity depends on the value range of relevant parameters, and the promotion effect is far less obvious than the attenuation effect on the observed intensity. One can find that the inner shadow region and outer bright region of the black hole wrapped by infalling accretion are significantly darker than those of the static model, which is closely related to the Doppler effect. In addition, the size of the shadow and the position of the photon sphere are always the same in the two accretion models, which means that the black hole shadow depend only on the geometry of spacetime, while the observation luminosity is affected by the form of accretion material and the related spacetime structure.
Keywords:  Rastall gravity      black hole  
Received:  04 March 2022      Revised:  04 March 2022      Accepted manuscript online:  12 May 2022
PACS:  04.50.Kd (Modified theories of gravity)  
  04.70.-s (Physics of black holes)  
  04.40.Nr (Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875095 and 11903025) and Basic Research Project of Science and Technology Committee of Chongqing (Grant No. cstc2018jcyjA2480).
Corresponding Authors:  Xuan-Ran Zhu, Yun-Xian Chen, Ping-Hui Mou, Ke-Jian He     E-mail:  xuanranzhu@126.com;cyx17765580321@163.com;mph2022@163.com;kjhe94@163.com

Cite this article: 

Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱) The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory 2023 Chin. Phys. B 32 010401

[1] Abbott B P, et al. 2016 Phys. Rev. Lett. 116 241103
[2] Abbott B P, et al. 2016 Phys. Rev. Lett. 116 241102
[3] Abbott B P, et al. 2016 Phys. Rev. Lett. 116 061102
[4] Akiyama K, et al. 2019 Astrophys. J. 875 L1
[5] Akiyama K, et al. 2019 Astrophys. J. Lett. 875 L4
[6] Akiyama K, et al. 2019 Astrophys. J. Lett. 875 L5
[7] Akiyama K, et al. 2019 Astrophys. J. Lett. 875 L6
[8] Synge J L 1966 Mon. Not. Roy. Astron. Soc. 131 463
[9] Luminet J P 1979 Astron. Astrophys. 75 228
[10] Bardeen J M 1972 Timelike and null geodesics in the Kerr metric, in Black Holes (Les Astres Occlus: Les Houches) pp. 215-239
[11] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Oxford University Press)
[12] Falcke H, Melia F and Agol E 2000 Astrophys. J. 528 L13
[13] Shaikh R, Kocherlakota P, Narayan R and Joshi P S 2019 Mon. Not. Roy. Astron. Soc. 482 52
[14] Banerjee I, Chakraborty S and SenGupta S 2020 Phys. Rev. D 101 041301
[15] Vagnozzi S and Visinelli L 2019 Phys. Rev. D 100 024020
[16] Vagnozzi S, Bambi C and Visinelli L 2020 Class. Quant. Grav. 37 087001
[17] Safarzadeh M, Loeb A and Reid M 2019 Mon. Not. Roy. Astron. Soc. 488 L90
[18] Davoudiasl H and Denton P B 2019 Phys. Rev. Lett. 123 021102
[19] Roy R and Yajnik U A 2020 Phys. Lett. B 803 135284
[20] Chen Y F, Shu J, Xue X, Yuan Q and Zhao Y 2020 Phys. Rev. Lett. 124 061102
[21] Amarilla L, Eiroa E F and Giribet G 2010 Phys. Rev. D 81 124045
[22] Li Z L and Bambi C 2014 JCAP 01 041
[23] Grenzebach A, Perlick V and Lämmerzahl C 2014 Phys. Rev. D 89 124004
[24] Contreras E, Rincón Á, Panotopoulos G, Bargue ño P and Koch B 2020 Phys. Rev. D 101 064053
[25] Wei S W and Liu Y X 2021 Eur. Phys. J. Plus 136 436
[26] Hu Z Z, Zhong Z, Li P C, Guo M Y and Chen B 2021 Phys. Rev. D 103 044057
[27] Guo M Y and Li P C 2020 Eur. Phys. J. C 80 588
[28] Chang Z and Zhu Q H 2020 Phys. Rev. D 102 044012
[29] Guo Y and Miao Y G 2020 Phys. Rev. D 102 084057
[30] Long F, Wang J C, Chen S B and Jing J L 2019 JHEP 10 269
[31] Guo H, Liu H, Kuang X M and Wang B 2020 Phys. Rev. D 102 124019
[32] Wei S W and Liu Y X 2013 JCAP 11 063
[33] Wei S W, Cheng P, Zhong Y and Zhou X N 2015 JCAP 08 004
[34] Huang Y, Chen S B and Jing J L 2016 Eur. Phys. J. C 76 594
[35] Wang H M, Xu Y M and Wei S W 2019 JCAP 03 046
[36] Neves J C S 2020 Eur. Phys. J. C 80 717
[37] Chen D Y, Gao C H, Liu X M and Yu C Y 2021 Eur. Phys. J. C 81 700
[38] Çimdiker İ, Demir D and Övgün A 2021 Phys. Dark Univ. 34 100900
[39] Javed W, Hamza A and Övgün A 2021 Universe 7 385
[40] Okyay M and Övgün A 2022 JCAP 01 009
[41] Porth O, et al. 2019 Astrophys. J. Suppl. 243 26
[42] Narayan R, Johnson M D and Gammie C F 2019 Astrophys. J. 885 L33
[43] Cunha P V P, Eiró N A, Herdeiro C A R and Lemos J P S 2020 JCAP 2003 035
[44] Zeng X X, Zhang H Q and Zhang H B 2020 Eur. Phys. J. C 80 872
[45] Qin X, Chen S B and Jing J L 2021 Class. Quant. Grav. 38 115008
[46] Gralla S E, Holz D R and Wald R M 2019 Phys. Rev. D 100 024018
[47] Zeng X X and Zhang H Q 2020 Eur. Phys. J. C 80 1058
[48] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D 104 024003
[49] Peng J, Guo M Y and Feng X H 2021 Chin. Phys. C 45 085103
[50] He K J, Tan S C and Li G P 2022 Eur. Phys. J. C 82 81
[51] Li G P and He K J 2021 Eur. Phys. J. C 81 1018
[52] Zeng X X, He K J and Li G P 2022 Sci. China Phys. Mech. Astron. 65 290411
[53] Zeng X X, Li G P and He K J 2022 Nucl. Phys. B 974 115639
[54] Li G P and He K J 2021 JCAP 06 037
[55] Peng J, Guo M Y and Feng X H 2021 Phys. Rev. D 104 124010
[56] Gralla S E and Lupsasca A 2020 Phys. Rev. D 101 044031
[57] He K J, Guo S, Tan S C and Li G P 2022 Chin. Phys. C 46 085106
[58] Guo S, Li G R and Liang E W 2022 Phys. Rev. D 105 023024
[59] Zhu Y N and Wang T 2021 Phys. Rev. D 104 104052
[60] Guerrero M, Olmo G J, Rubiera-Garcia D and Gómez D S C 2021 JCAP 08 036
[61] Gan Q Y, Wang P, Wu H W and Yang H T 2021 Phys. Rev. D 104 044049
[62] Hou Y H, Guo M Y and Chen B 2021 Phys. Rev. D 104 024001
[63] Saurabh K and Jusufi K 2021 Eur. Phys. J. C 81 490
[64] Rastall P 1972 Phys. Rev. D 6 3357
[65] Rastall P 1976 Can. J. Phys. 54 66
[66] Heydarzade Y and Darabi F 2017 Phys. Lett. B 771 365
[67] Pourhassan B and Upadhyay S 2021 Eur. Phys. J. Plus 136 311
[68] Lobo I P, Moradpour H, Morais Graça J P and Salako I G 2018 Int. J. Mod. Phys. D 27 1850069
[69] Kumar R, Singh B P, Ali M S and Ghosh S G 2021 Phys. Dark Univ. 34 100881
[70] Soroushfar S, Saffari R and Upadhyay S 2019 Gen. Rel. Grav. 51 130
[71] Lobo I P, Richarte M G, Morais Graça J P and Moradpour H 2020 Eur. Phys. J. Plus 135 550
[72] Gogoi D J and Goswami U D 2021 Phys. Dark Univ. 33 100860
[73] Guo S, He K J, Li G R and Li G P 2021 Class. Quant. Grav. 38 165013
[74] Kiselev V V 2003 Class. Quant. Grav. 20 1187
[75] Vikman A 2005 Phys. Rev. D 71 023515
[76] Jaroszynski M and Kurpiewski A 1997 Astron. Astrophys. 326 419
[77] Bambi C 2013 Phys. Rev. D 87 107501
[1] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[2] Holographic heat engine efficiency of hyperbolic charged black holes
Wei Sun(孙威) and Xian-Hui Ge(葛先辉). Chin. Phys. B, 2021, 30(10): 109501.
[3] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[4] Thermal properties of regular black hole with electric charge in Einstein gravity coupled to nonlinear electrodynamics
Yi-Huan Wei(魏益焕). Chin. Phys. B, 2019, 28(12): 120401.
[5] Destroying MTZ black holes with test particles
Yu Song(宋宇), Hao Tang(唐浩), De-Cheng Zou(邹德成), Cheng-Yi Sun(孙成一), Rui-Hong Yue(岳瑞宏). Chin. Phys. B, 2018, 27(2): 020401.
[6] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[7] Gravitational quasi-normal modes of static R2 Anti-de Sitter black holes
Hong Ma(马洪), Jin Li(李瑾). Chin. Phys. B, 2017, 26(6): 060401.
[8] A note on the mass of Kerr-AdS black holes in the off-shell generalized ADT formalism
Yi-De Jing(景艺德), Jun-Jin Peng(彭俊金). Chin. Phys. B, 2017, 26(10): 100401.
[9] Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes
T. Ibungochouba Singh. Chin. Phys. B, 2015, 24(7): 070401.
[10] Concrete quantum tunneling spectrum of Schwarzschild black holes
Chen Si-Na (陈斯纳), Zhang Jing-Yi (张靖仪). Chin. Phys. B, 2015, 24(2): 020401.
[11] Thermodynamics of a two-dimensional charged black holein the geometric framework
Han Yi-Wen (韩亦文), Hong Yun (洪云). Chin. Phys. B, 2014, 23(10): 100401.
[12] Spectroscopy via adiabatic covariant action for the Bañados-Teitelboim-Zanelli (BTZ) black hole
Li Hui-Ling (李慧玲), Lin Rong (林榕), Cheng Li-Ying (程丽英). Chin. Phys. B, 2013, 22(5): 050402.
[13] Quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge
Xie Zhi-Kun (谢志堃), Pan Wei-Zhen (潘伟珍), Yang Xue-Jun (杨学军). Chin. Phys. B, 2013, 22(3): 039701.
[14] Thermodynamic properties of Reissner–Nordström–de Sitter quintessence black holes
Wei Yi-Huan (魏益焕), Ren Jun (任军). Chin. Phys. B, 2013, 22(3): 030402.
[15] Non-equilibrium Landauer transport model for Hawking radiation from a Reissner–Nordstrom black hole
Zeng Xiao-Xiong (曾晓雄), Zhou Shi-Wei (周史薇), Liu Wen-Biao (刘文彪). Chin. Phys. B, 2012, 21(9): 090402.
No Suggested Reading articles found!