Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018508    DOI: 10.1088/1674-1056/ac90b5
Special Issue: SPECIAL TOPIC — Physics in micro-LED and quantum dots devices
TOPICAL REVIEW—Physics in micro-LED and quantum dots devices Prev   Next  

Review of a direct epitaxial approach to achieving micro-LEDs

Yuefei Cai(蔡月飞)1,†, Jie Bai(白洁)2, and Tao Wang(王涛)2,‡
1 Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
2 Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom
Abstract  There is a significantly increasing demand of developing augmented reality and virtual reality (AR and VR) devices, where micro-LEDs (μLEDs) with a dimension of ≤ 5 μ m are the key elements. Typically, μLEDs are fabricated by dry-etching technologies, unavoidably leading to a severe degradation in optical performance as a result of dry-etching induced damages. This becomes a particularly severe issue when the dimension of LEDs is ≤ 10 μ m. In order to address the fundamental challenge, the Sheffield team has proposed and then developed a direct epitaxial approach to achieving μLEDs, where the dry-etching technologies for the formation of μLED mesas are not needed anymore. This paper provides a review on this technology and then demonstrates a number of monolithically integrated devices on a single chip using this technology.
Keywords:  micro-LED      epitaxial growth      gallium nitride      display  
Received:  30 July 2022      Revised:  30 August 2022      Accepted manuscript online:  09 September 2022
PACS:  85.60.Jb (Light-emitting devices)  
  81.05.Ea (III-V semiconductors)  
Fund: Project supported by the Engineering and Physical Sciences Research Council (EPSRC), U.K., via EP/P006973/1, EP/T013001/1, and EP/M015181/1.
Corresponding Authors:  Yuefei Cai, Tao Wang     E-mail:;

Cite this article: 

Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛) Review of a direct epitaxial approach to achieving micro-LEDs 2023 Chin. Phys. B 32 018508

[1] Lee V W, Twu N and Kymissis I 2016 J. Inf. Disp. 32 16
[2] Fan Z Y, Lin J Y and Jiang H X 2008 J. Phys. D 41 094001
[3] Templier F 2016 J. Soc. Inf. Disp. 24 669
[4] Day J, Li J, Lie D Y C, Bradford C, Lin J Y and Jiang H X 2011 Appl. Phys. Lett. 99 031116
[5] Green R P, McKendry J J D, Massoubre D, Gu E, Dawson M D and Kelly A E 2013 Appl. Phys. Lett. 102 091103
[6] Rajbhandari S, McKendry J J D, Herrnsdorf J, Chun H, Faulkner G, Haas H, Watson I M, O'Brien D and Dawson M D 2017 Semicond. Sci. Technol. 32 023001
[7] Ozden I, Diagne M, Nurmikko A V, Han J and Takeuchi T 2001 Phys. Status Solidi A 188 139
[8] Liu Z J, Wong K M, Keung C W, Tang C W and Lau K M 2009 IEEE J. Sel. Top. Quantum Electron. 15 4
[9] Otto I, Mounir C, Nirschl A, Pfeuffer A, Schapers Th, Schwarz U T and von Malm N 2015 Appl. Phys. Lett. 106 151108
[10] Li K H, Cheung Y F, Tang C W, Zhao C, Lau K M and Choi H W 2016 Phys. Status Solidi A 213 5
[11] Templier F, Dupre L, Tirano S, Marra M, Verney V, Olivier F, Aventurier B, Sarrasin D, Marion F, Catelain T, Berger F, Mathieu L, Dupont B and Gamarra P 2016 Dig. Tech. Pap.-Soc. Inf. Disp. Int. Symp. 47 1013
[12] Ploch N L, Rodriguez H, Stölmackerr C, Hoppe M, Lapeyrade M, Stell-mach J, Mehnke, F, Wernicke T, Knauer A, Kueller V, Weyers M, Ein-feldt S and Kneissl M 2013 IEEE Trans. Electron Devices 60 782
[13] Olivier F, Daami A, Licitra C and Templier F 2017 Appl. Phys. Lett. 111 022104
[14] Wong M S, Hwang D, Alhassan A I, Lee C, Ley R, Nakamura S and DenBaars S P 2018 Opt. Express 26 21324
[15] Konoplev S S, Bulashevich K A and Karpov S Y 2018 Phys. Status Solidi A 215 1700508
[16] Yang C M, Kim D S, Park Y S, Lee J H, Lee Y S and Lee J H 2012 Opt. Photonics J. 2 185
[17] Zhang Y, Guo Y, Li Z, Wei T, Li J, Yi X and Wang G 2012 IEEE Photonics Technol. Lett. 24 4
[18] Zuo P, Zhao B, Yan S, Yue G, Yang H, Li Y, Wu H, Jiang Y, Jia H, Zhou J and Chen H 2016 Opt. Quantum Electron. 48 1
[19] Hwang D, Mughal A, Pynn C D, Nakamura S and DenBaars S P 2017 Appl. Phys. Express 10 032101
[20] Templier F, Benaïssa L, Aventurier B, Nardo C D, Charles M, Daami A, Henry F and Dupre L 2017 Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48 268
[21] El-Masry N A, Piner E L, Liu S X and Bedair S M 1998 Appl. Phys. Lett. 72 40
[22] Wakahara A, Tokuda T, Dang X Z, Noda S and Sasaki A 1997 Appl. Phys. Lett. 71 906
[23] Inatomi Y, Kanagawa Y, Ito T and Suski T 2017 Jpn. J. Appl. Phys. 56 078003
[24] Wang T 2016 Semicond. Sci. Technol. 31 093003
[25] Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M and Deatcher C J 2002 Appl. Phys. Lett. 80 3913
[26] Shimizu M, Kawaguchi Y, Hiramatsu K and Sawaki N 1997 Jpn. J. Appl. Phys. 36 3381
[27] Sonderegger S, Feltin E, Merano M, Crottini A, Carlin J F, Sachot R, Deveaud B, Grandjean N and Ganiere J D 2006 Appl. Phys. Lett. 89 232109
[28] Tawfik W Z, Hyun G Y, Ryu S W, Ha J S and Lee J K 2016 Opt. Mater. 55 17
[29] Iida D, Zhuang Z, Kirilenko P, Velazquez-Rizo M, Najmi M A and Ohkawaa K 2020 Appl. Phys. Lett. 116 162101
[30] Hwang J I, Hashimoto R, Saito S and Nunoue S 2014 Appl. Phys. Express 7 071003
[31] Hashimoto R, Hwang J, Saito S and Nunoue S 2014 Phys. Status Solidi C 11 628
[32] Zhuang Z, Iida D and Ohkawa K 2022 Jpn. J. Appl. Phys. 61 SA0809
[33] Bai J, Cai Y, Feng P, Fletcher P, Zhao X, Zhu C and Wang T 2020 ACS Photonics 7 411
[34] Bai J, Cai Y, Feng P, Fletcher P, Zhu C, Tian Y and Wang T 2020 ACS Nano 14 6906
[35] Martinez de Arriba G, Feng P, Xu C, Zhu C, Bai J and Wang T 2022 ACS Photonics 9 2073
[36] Feng P, Xu C, Bai J, Zhu C, Farrer I, Martinez de Arriba G and Wang T 2022 ACS Appl. Electron. Mater. 4 2787
[37] Esendag V, Bai J, Fletcher P, Feng P, Zhu C, Cai Y and Wang T 2021 Physica Status Solidi A 218 2100474
[38] Cai Y, Haggar J I H, Zhu C, Feng P, Bai J and Wang T 2021 ACS Appl. Electron. Mater. 3 445
[39] Cai Y, Zhu C, Zhong W, Feng P, Jiang S and Wang T 2021 Adv. Mater. Technol. 6 2100214
[40] Li P, Li H, Yang Y, Zhang H, Shapturenka P, Wong M, Lynsky C, Iza M, Gordon M J, Speck J S, Nakamura S and DenBaars S P 2022 Appl. Phys. Lett. 120 041102
[41] Li P, Li H, Zhang H, Yang Y, Wong M S, Lynsky C, Iza M, Gordon M J, Speck J S, Nakamura S and DenBaars S P 2022 Appl. Phys. Lett. 120 121102
[42] Horng R H, Ye C X, Chen P W, Iida D, Ohkawa K, Wu Y R and Wuu D S 2022 Sci. Rep. 12 1324
[43] Yu L, Wang L, Yang P, Hao Z, Yu J, Luo Y, Sun C, Xiong B, Han Y, Wang J, Li H and Wang L 2022 Opt. Mater. Express 12 3225
[44] Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek Jr R F and Chow T P 2013 Appl. Phys. Lett. 102 192107
[45] Liu Z, Huang T, Ma J, Liu C and Lau K M 2014 IEEE Electron Device Lett. 35 330
[46] Liu Z, Ma J, Huang T, Liu C and Lau K M 2014 Appl. Phys. Lett. 104 091103
[47] Liu C, Cai Y, Liu Z, Ma J and Lau K M 2015 Appl. Phys. Lett. 106 181110
[48] Cai Y, Zou X, Liu C and Lau K M 2017 IEEE Electron Device Lett. 39 224
[49] Yu L, Wang L, Hao Z, Luo Y, Sun C, Xiong B, Han Y, Wang J and Li H 2022 Semicond. Sci. Technol. 37 023001
[1] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[2] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[3] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[4] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[5] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[6] Narrow-band high-transmittance birefringent filter and its application in wide color gamut display
Chi Zhang(张弛), Rui Niu(牛瑞), Wenjuan Li(李文娟), Xiaoshuai Li(李小帅), Hongmei Ma(马红梅), and Yubao Sun(孙玉宝). Chin. Phys. B, 2021, 30(5): 054207.
[7] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[8] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[9] High crystalline quality of SiGe fin fabrication with Si-rich composition area using replacement fin processing
Ying Zan(昝颖), Yong-Liang Li(李永亮), Xiao-Hong Cheng(程晓红), Zhi-Qian Zhao(赵治乾), Hao-Yan Liu(刘昊炎), Zhen-Hua Hu(吴振华), An-Yan Du(都安彦), Wen-Wu Wang(王文武). Chin. Phys. B, 2020, 29(8): 087303.
[10] Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(3): 037201.
[11] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), and Yang Liu (刘扬)†. Chin. Phys. B, 2020, 29(10): 107201.
[12] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[13] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[14] Macadam's theory in RGB laser display
Guan Wang(王贯), Yuhua Yang(杨雨桦), Tianhao Dong(董天浩), Chun Gu(顾春), Lixin Xu(许立新), Zhongcan Ouyang(欧阳钟灿), Zuyan Xu(许祖彦). Chin. Phys. B, 2019, 28(6): 064209.
[15] Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures
Zhi-Feng Tian(田志锋), Peng Xu(徐鹏), Yao Yu(余耀), Jian-Dong Sun(孙建东), Wei Feng(冯伟), Qing-Feng Ding(丁青峰), Zhan-Wei Meng(孟占伟), Xiang Li(李想), Jin-Hua Cai(蔡金华), Zhong-Xin Zheng(郑中信), Xin-Xing Li(李欣幸), Lin Jin(靳琳), Hua Qin(秦华), Yun-Fei Sun(孙云飞). Chin. Phys. B, 2019, 28(5): 058501.
No Suggested Reading articles found!