Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 104501    DOI: 10.1088/1674-1056/27/10/104501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of particle packing structure on sound velocity

Chuang Zhao(赵闯)1, Cheng-Bo Li(李成波)2, Lin Bao(鲍琳)1
1 College of Physics, Guizhou University, Guiyang 550025, China;
2 College of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000, China
Abstract  

The anisotropy in the particle systems of different packing structures affects the sound velocity. The acoustic propagation process in four kinds of packing structures (denoted as S45, H60, S90, and D) of two-dimensional granular system is simulated by the discrete element method. The velocity vtof obtained by the time of flight method and the velocity vc obtained from the stiffness tensor of the system are compared. Different sound velocities reflect various packing structures and force distributions within the system. The compression wave velocities of H60 and S90 are nearly the same, and transmit faster than that of D packing structure, while the sound velocity of S45 is the smallest. The shear wave velocities of S45 and H60 are nearly the same, and transmit faster than that of D packing structure. The compression wave velocity is sensitive to the volume fraction of the structure, however, the shear wave velocity is more sensitive to the geometrical structure itself. As the normal stress p is larger than 1 MPa, vtof and vc are almost equal, and the stiffness tensors of various structures explain the difference of sound velocities. When the normal stress is less than 1 MPa, with the coordination number unchanged, the law vtofp1/4 still exists. This demonstrates that apart from different power laws between force and deformation as well as the change of the coordination number under different stresses, there are other complicated causes of vtofp1/4, and an explanation of the deviation from vtofp1/6 is given from the perspective of dissipation.

Keywords:  discrete element method      acoustic propagation      packing structure      stiffness tensor  
Received:  10 April 2018      Revised:  13 June 2018      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  83.80.Fg (Granular solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11547009), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11602062), the Natural Science Foundation of Guizhou Province, China (Grant No. 2012/2166), and the Research Foundation of Guizhou University for Talent Introduction, China (Grant No. 2011/02).

Corresponding Authors:  Chuang Zhao     E-mail:  1508868030@qq.com

Cite this article: 

Chuang Zhao(赵闯), Cheng-Bo Li(李成波), Lin Bao(鲍琳) Influence of particle packing structure on sound velocity 2018 Chin. Phys. B 27 104501

[1] Luding S 2004 Int. J. Solids Struct. 41 5821
[2] Somfai E, Roux J N, Snoeijer J H, Van H M and Van S W 2005 Phys. Rev. E 72 021301
[3] Majmudar T S and Behringer R P 2005 Nature 435 1079
[4] Desrues J, Chambon R, Mokni M and Mazerolle F 1996 Geotechnique 46 529
[5] Mueth D M, Debregeas G F, Karczmar G S, Eng P J, Nagel S R and Jaeger H M 2000 Nature 406 385
[6] Santibanez F, Zuñiga R and Melo F 2016 Phys. Rev. E 93 012908
[7] Jia X, Caroli C and Velicky B 1999 Phys. Rev. Lett. 82 1863
[8] Makse H A, Gl, N, Johnson D L and Schwartz L 2004 Phys. Rev. E 70 061302
[9] Khidas Y and Jia X 2010 Phys. Rev. E 81 021303
[10] Jia X, Brunet T and Laurent J 2011 Phys. Rev. E 84 020301
[11] Wapenaar K, Broggini F, Slob E and Snieder R 2013 Phys. Rev. Lett. 110 084301
[12] Johnson P A and Jia X 2005 Nature 437 871
[13] Khidas Y and Jia X 2012 Phys. Rev. E 85 051302
[14] Zhang Q, Li Y, Hou M, Jiang Y and Liu M 2012 Phys. Rev. E 85 031306
[15] Zhou Z, Jiang Y and Hou M 2017 Chin. Phys. B 26 084502
[16] Owens E T and Daniels K E 2011 Europhys. Lett. 94 54005
[17] Lherminier S, Planet R, Simon G, Vanel L and Ramos O 2014 Phys. Rev. Lett. 113 098001
[18] Jiang Y, Zheng H, Peng Z, Fu L, Song S, Sun Q, Mayer M and Liu M 2012 Phys. Rev. E 85 051304
[19] Jiang Y and Liu M 2014 Acta Mech. 225 2363
[20] Gilles B and Coste C 2003 Phys. Rev. Lett. 90 174302
[21] Velický B and Caroli C 2002 Phys. Rev. E 65 021307
[22] Hostler S R and Brennen C E 2005 Phys. Rev. E 72 031303
[23] Huillard G, Noblin X and Rajchenbach J 2011 Phys. Rev. E 84 016602
[24] Ramos O, Altshuler E and Måløy K J 2009 Phys. Rev. Lett. 102 078701
[25] Makse H A, Gl, N, Johnson D L and Schwartz L M 1999 Phys. Rev. Lett. 83 5070
[26] Wallen S P, Maznev A A and Boechler N 2015 Phys. Rev. B 92 174303
[27] Merkel A and Luding S 2017 Int. J. Solids Struct. 106-107 91
[28] Zhao J and Guo N 2015 Geotechnique 65 642
[29] Sun Q, Jin F, Wang G, Jin F and Zhang G 2015 Sci. Rep. 5 9652
[30] Suiker A S J, Metrikine A V and De Borst R 2001 Int. J. Solids Struct. 38 1563
[31] Pichard H, Duclos A, Groby J P, Tournat V and Gusev V E 2012 Phys. Rev. B 86 134307
[32] Boechler N, Eliason J K, Kumar A, Maznev A A, Nelson K A and Fang N 2013 Phys. Rev. Lett. 111 036103
[33] Merkel A, Tournat V and Gusev V 2010 Phys. Rev. E 82 031305
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[3] A numerical study of dynamics in thin hopper flow and granular jet
Meng-Ke Wang(王梦柯), Guang-Hui Yang(杨光辉), Sheng Zhang(张晟), Han-Jie Cai(蔡汉杰), Ping Lin(林平), Liang-Wen Chen(陈良文), Lei Yang(杨磊). Chin. Phys. B, 2020, 29(4): 048102.
[4] Criteria for Beverloo's scaling law
Sheng Zhang(张晟), Ping Lin(林平), Guanghui Yang(杨光辉), Jiang-Feng Wan(万江锋), Yuan Tian(田园), Lei Yang(杨磊). Chin. Phys. B, 2019, 28(1): 018101.
[5] A numerical study of contact force in competitive evacuation
Peng Lin(林鹏), Jian Ma(马剑), You-Ling Si(司有亮), Fan-Yu Wu(吴凡雨), Guo-Yuan Wang(王国元), Jian-Yu Wang(王建宇). Chin. Phys. B, 2017, 26(10): 104501.
[6] Discrete element crowd model for pedestrian evacuation through an exit
Peng Lin(林鹏), Jian Ma(马剑), Siuming Lo(卢兆明). Chin. Phys. B, 2016, 25(3): 034501.
[7] Fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios
Zhang Xiao-Dan (张晓丹), Xia Cheng-Jie (夏成杰), Xiao Xiang-Hui (肖相辉), Wang Yu-Jie (王宇杰). Chin. Phys. B, 2014, 23(4): 044501.
[8] Simulation of random mixed packing of different density particles
Li Yuan-Yuan(李元元), Xia Wei(夏伟),Zhou Zhao-Yao(周照耀), He Ke-Jing(何克晶), Zhong Wen-Zhen(钟文镇), and Wu Yuan-Biao(吴苑标). Chin. Phys. B, 2010, 19(2): 024601.
No Suggested Reading articles found!