ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Discharge flow of granular particles through an orifice on a horizontal hopper: Effect of the hopper angle |
Xin Wang(王欣), Hong-Wei Zhu(朱红伟), Qing-Fan Shi(史庆藩), Ning Zheng(郑宁) |
School of Physics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract We experimentally investigate the effect of the hopper angle on the flow rate of grains discharged from a two-dimensional horizontal hopper on a conveyor belt. The flow rate grows with the hopper angle, and finally reaches a plateau. The curve feature appears to be similar for different orifice widths and conveyor belt-driven velocities. On the basis of an empirical law of flow rate for a flat-bottom hopper, we propose a modified equation to describe the relation between the flow rate and hopper angle, which is in a good agreement with the experimental results.
|
Received: 17 December 2019
Revised: 06 January 2020
Accepted manuscript online:
|
PACS:
|
45.70.Mg
|
(Granular flow: mixing, segregation and stratification)
|
|
47.56.+r
|
(Flows through porous media)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475018 and 11974044) and the National Key Research and Development Program of China (Grant 2016YFC1401001). |
Corresponding Authors:
Qing-Fan Shi, Ning Zheng
E-mail: qfshi123@bit.edu.cn;ningzheng@bit.edu.cn
|
Cite this article:
Xin Wang(王欣), Hong-Wei Zhu(朱红伟), Qing-Fan Shi(史庆藩), Ning Zheng(郑宁) Discharge flow of granular particles through an orifice on a horizontal hopper: Effect of the hopper angle 2020 Chin. Phys. B 29 044502
|
[1] |
Nedderman R M 1992 Statics and Kinematics of Granular Materials (Cambridge: Cambridge University Press) p. 301
|
[2] |
Helbing D, Johansson A, Mathiesen J, Jensen M H and Hansen A 2006 Phys. Rev. Lett. 97 168001
|
[3] |
Helbing I F D and Vicsek T 2000 Nature 407 487
|
[4] |
Janda A, Zuriguel I and Maza D 2012 Phys. Rev. Lett. 108 248001
|
[5] |
Wang T W, Li X, Wu Q Q, Jiao T F, Liu X Y, Sun M, Hu F L and Huang D C 2018 Chin. Phys. B 27 124704
|
[6] |
Chen K, Stone M B, Barry R, Lohr M, McConville W, Klein K, Sheu B L, Morss A J, Scheidemantel T and Schiffer P 2006 Phys. Rev. E 74 011306
|
[7] |
Wen P, Zheng N, Nian J, Li L S and Shi Q F 2015 Sci. Rep. 5 09880
|
[8] |
Zuriguel I, Janda A, Garcimartín A, Lozano C, Arévalo R and Maza D 2011 Phys. Rev. Lett. 107 278001
|
[9] |
Lozano C, Janda A, Garcimartín A, Maza D and Zuriguel I 2012 Phys. Rev. E 86 031306
|
[10] |
Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K and Nishinari K 2009 Phys. Rev. E 80 036110
|
[11] |
Zuriguel I, Olivares J, Pastor J M, MartínG ómez C, Ferrer L M, Ramos J J and Garcimartín A 2016 Phys. Rev. E 94 032302
|
[12] |
Yang S C and Hsiau S S 2001 Powder Technol. 120 244
|
[13] |
Anand A, Curtis J S, Wassgren C R, Hancock B C and Ketterhagen W R 2008 Chem. Eng. Sci. 63 5821
|
[14] |
Choi J, Kudrolli A and Bazant M Z 2005 J. Phys: Condens. Matter. 17 S2533
|
[15] |
Uñac R O, Vidales A M, Benegas O A and Ippolito I 2012 Powder Technol. 225 013
|
[16] |
Benyamine M, Aussillous P and Dalloz D B 2017 EP J. Web Conferences 140 03043
|
[17] |
Yang L N and Chen Y Q 2019 Chin. Phys. Lett. 36 024501
|
[18] |
Wan J, Wang F, Yang G, Zhang S, Wang M, Lin P and Yang L 2018 Powder Technol. 335 147
|
[19] |
Alonso-Marroquin F, Azeezullah S I, Galindo-Torres S A and Olsen-Kettle L M 2012 Phys. Rev. E 85 020301
|
[20] |
Aguirre M A, Grande J G, Calvo A, Pugnaloni L A and Géminard J C 2010 Phys. Rev. Lett. 104 238002
|
[21] |
De S B, Xun S Z, Guang L X, Zheng Q P, Xiao W T and Kun Q L 2003 Phys. Rev. E 67 062301
|
[22] |
Cordero M J and Pugnaloni L A 2015 Powder Technol. 272 290
|
[23] |
Aguirre M A, De Schant R and Géminard J C 2014 Phys. Rev. E 90 012203
|
[24] |
Zhu H W, Wang L P, Shi Q F, Li L S and Zheng N 2019 Powder Technol. 345 053
|
[25] |
Helbing D 2001 Rev. Mod. Phys. 73 1067
|
[26] |
Nedderman R M and Laohakul C 1980 Powder Technol. 25 91
|
[27] |
Fowler R T and Glastonbury J R 1959 Chem. Eng. Sci. 10 150
|
[28] |
Manuel J C and Luis A P 2015 Powder. Technol. 272 290
|
[29] |
Mankoc C, Janda A, Arévalo R, Pastor J M, Zuriguel I, Garcimartín A and Maza D 2007 Granul. Matter. 9 407
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|