Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 044502    DOI: 10.1088/1674-1056/ab7b51
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Discharge flow of granular particles through an orifice on a horizontal hopper: Effect of the hopper angle

Xin Wang(王欣), Hong-Wei Zhu(朱红伟), Qing-Fan Shi(史庆藩), Ning Zheng(郑宁)
School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  We experimentally investigate the effect of the hopper angle on the flow rate of grains discharged from a two-dimensional horizontal hopper on a conveyor belt. The flow rate grows with the hopper angle, and finally reaches a plateau. The curve feature appears to be similar for different orifice widths and conveyor belt-driven velocities. On the basis of an empirical law of flow rate for a flat-bottom hopper, we propose a modified equation to describe the relation between the flow rate and hopper angle, which is in a good agreement with the experimental results.
Keywords:  granular flow      flow rate      hopper angle      Beverloo law  
Received:  17 December 2019      Revised:  06 January 2020      Accepted manuscript online: 
PACS:  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  47.56.+r (Flows through porous media)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475018 and 11974044) and the National Key Research and Development Program of China (Grant 2016YFC1401001).
Corresponding Authors:  Qing-Fan Shi, Ning Zheng     E-mail:  qfshi123@bit.edu.cn;ningzheng@bit.edu.cn

Cite this article: 

Xin Wang(王欣), Hong-Wei Zhu(朱红伟), Qing-Fan Shi(史庆藩), Ning Zheng(郑宁) Discharge flow of granular particles through an orifice on a horizontal hopper: Effect of the hopper angle 2020 Chin. Phys. B 29 044502

[1] Nedderman R M 1992 Statics and Kinematics of Granular Materials (Cambridge: Cambridge University Press) p. 301
[2] Helbing D, Johansson A, Mathiesen J, Jensen M H and Hansen A 2006 Phys. Rev. Lett. 97 168001
[3] Helbing I F D and Vicsek T 2000 Nature 407 487
[4] Janda A, Zuriguel I and Maza D 2012 Phys. Rev. Lett. 108 248001
[5] Wang T W, Li X, Wu Q Q, Jiao T F, Liu X Y, Sun M, Hu F L and Huang D C 2018 Chin. Phys. B 27 124704
[6] Chen K, Stone M B, Barry R, Lohr M, McConville W, Klein K, Sheu B L, Morss A J, Scheidemantel T and Schiffer P 2006 Phys. Rev. E 74 011306
[7] Wen P, Zheng N, Nian J, Li L S and Shi Q F 2015 Sci. Rep. 5 09880
[8] Zuriguel I, Janda A, Garcimartín A, Lozano C, Arévalo R and Maza D 2011 Phys. Rev. Lett. 107 278001
[9] Lozano C, Janda A, Garcimartín A, Maza D and Zuriguel I 2012 Phys. Rev. E 86 031306
[10] Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K and Nishinari K 2009 Phys. Rev. E 80 036110
[11] Zuriguel I, Olivares J, Pastor J M, MartínG ómez C, Ferrer L M, Ramos J J and Garcimartín A 2016 Phys. Rev. E 94 032302
[12] Yang S C and Hsiau S S 2001 Powder Technol. 120 244
[13] Anand A, Curtis J S, Wassgren C R, Hancock B C and Ketterhagen W R 2008 Chem. Eng. Sci. 63 5821
[14] Choi J, Kudrolli A and Bazant M Z 2005 J. Phys: Condens. Matter. 17 S2533
[15] Uñac R O, Vidales A M, Benegas O A and Ippolito I 2012 Powder Technol. 225 013
[16] Benyamine M, Aussillous P and Dalloz D B 2017 EP J. Web Conferences 140 03043
[17] Yang L N and Chen Y Q 2019 Chin. Phys. Lett. 36 024501
[18] Wan J, Wang F, Yang G, Zhang S, Wang M, Lin P and Yang L 2018 Powder Technol. 335 147
[19] Alonso-Marroquin F, Azeezullah S I, Galindo-Torres S A and Olsen-Kettle L M 2012 Phys. Rev. E 85 020301
[20] Aguirre M A, Grande J G, Calvo A, Pugnaloni L A and Géminard J C 2010 Phys. Rev. Lett. 104 238002
[21] De S B, Xun S Z, Guang L X, Zheng Q P, Xiao W T and Kun Q L 2003 Phys. Rev. E 67 062301
[22] Cordero M J and Pugnaloni L A 2015 Powder Technol. 272 290
[23] Aguirre M A, De Schant R and Géminard J C 2014 Phys. Rev. E 90 012203
[24] Zhu H W, Wang L P, Shi Q F, Li L S and Zheng N 2019 Powder Technol. 345 053
[25] Helbing D 2001 Rev. Mod. Phys. 73 1067
[26] Nedderman R M and Laohakul C 1980 Powder Technol. 25 91
[27] Fowler R T and Glastonbury J R 1959 Chem. Eng. Sci. 10 150
[28] Manuel J C and Luis A P 2015 Powder. Technol. 272 290
[29] Mankoc C, Janda A, Arévalo R, Pastor J M, Zuriguel I, Garcimartín A and Maza D 2007 Granul. Matter. 9 407
[1] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[2] Graphene/Mo2C heterostructure directly grown by chemical vapor deposition
Rongxuan Deng(邓荣轩), Haoran Zhang(张浩然), Yanhui Zhang(张燕辉), Zhiying Chen(陈志蓥), Yanping Sui(隋妍萍), Xiaoming Ge(葛晓明), Yijian Liang(梁逸俭), Shike Hu(胡诗珂), Guanghui Yu(于广辉), Da Jiang(姜达). Chin. Phys. B, 2017, 26(6): 067901.
[3] Influences of nitrogen flow rate on the structures and properties of Ti and N co-doped diamond-like carbon films deposited by arc ion plating
Zhang Lin (张林), Ma Guo-Jia (马国佳), Lin Guo-Qiang (林国强), Ma He (马贺), Han Ke-Chang (韩克昌). Chin. Phys. B, 2014, 23(4): 048102.
[4] Influence of the total gas flow rate on high rate growth microcrystalline silicon films and solar cells
Han Xiao-Yan(韩晓艳), Hou Guo-Fu(侯国付), Zhang Xiao-Dan(张晓丹), Wei Chang-Chun(魏长春), Li Gui-Jun(李贵君), Zhang De-Kun(张德坤), Chen Xin-Liang(陈新亮), Sun Jian(孙健), Zhang Jian-Jun(张建军), Zhao Ying(赵颖), and Geng Xin-Hua(耿新华). Chin. Phys. B, 2009, 18(8): 3563-3567.
[5] Influence of total gas flow rate on microcrystalline silicon films prepared by VHF-PECVD
Gao Yan-Tao (高艳涛), Zhang Xiao-Dan (张晓丹), Zhao Ying (赵颖), Sun Jian (孙健), Zhu Feng (朱峰), Wei Chang-Chun (魏长春), Chen Fei (陈飞). Chin. Phys. B, 2006, 15(5): 1110-1113.
No Suggested Reading articles found!