Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 094302    DOI: 10.1088/1674-1056/aca14b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamics of magnetic microbubble transport in blood vessels

Jie Chen(陈杰), Chenghui Wang(王成会), and Runyang Mo(莫润阳)
Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
Abstract  Magnetic microbubbles (MMBs) can be controlled and directed to the target site by a suitable external magnetic field, and thus have potential in therapeutic drug-delivery application. However, few studies focus on their dynamics in blood vessels under the action of magnetic and ultrasonic fields, giving little insight into the mechanism generated in diagnostic and therapeutic applications. In this study, equations of MMBs were established for simulating translation, radial pulsation and the coupled effect of both. Meanwhile, the acoustic streaming and shear stress on the vessel wall were also presented, which are associated with drug release. The results suggest that the magnetic pressure increases the bubble pulsation amplitude, and the translation coupled with pulsation is manipulated by the magnetic force, causing retention in the target area. As the bubbles approach the vessel wall, the acoustic streaming and shear stress increase with magnetic field enhancement. The responses of bubbles to a uniform and a gradient magnetic field were explored in this work. The mathematical models derived in this work could provide theoretical support for experimental phenomena in the literature and also agree with the reported models.
Keywords:  magnetic microbubbles      targeted drug delivery      ultrasound      magnetic field  
Received:  08 September 2022      Revised:  07 November 2022      Accepted manuscript online:  09 November 2022
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  47.55.dp (Cavitation and boiling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074238, 11974232, and 11727813).
Corresponding Authors:  Chenghui Wang, Runyang Mo     E-mail:  wangld001@snnu.edu.cn;mmrryycn@snnu.edu.cn

Cite this article: 

Jie Chen(陈杰), Chenghui Wang(王成会), and Runyang Mo(莫润阳) Dynamics of magnetic microbubble transport in blood vessels 2023 Chin. Phys. B 32 094302

[1] Owen J, Crake C, Lee J Y, Carugo D, Beguin E, Khrapitchev A A, Browning J R, Sibson N and Stride E 2018 Drug Deliv. Transl. Res. 2 342
[2] Zhang B, Kim H, Wu H, Gao Y and Jiang X 2019 Ultrasonics 98 62
[3] Yang F, Gu Z, Jin X, Wang H and Gu N 2013 Chin. Phys. B 22 104301
[4] Poehlmann M, Grishenkov D, Kothapalli S V, Härmark J, Hebert H, Philipp A, Hoeller R, Seuss M, Kuttner C and Margheritelli S 2014 Soft Matter 10 214
[5] Guo H, Jiang Z, Song S, Dai T, Wang X, Sun K, Zhou G and Dou H 2016 J. Colloid Interface Sci. 482 95
[6] Niu C, Wang Z, Lu G, Krupka T M, Sun Y, You Y, Song W, Ran H, Li P and Zheng Y 2013 Biomaterials 34 2307
[7] Duan L, Yang F, Song L, Fang K, Tian J, Liang Y, Li M, Xu N, Chen Z, Zhang Y and Gu N 2015 Soft Matter 11 5492
[8] Stride E, Porter C, Prieto A G and Pankhurst Q 2009 Ultrasound Med. Biol. 35 861
[9] Mulvana H, Eckersley R J, Browning R, Hajnal J V, Stride E, Barrack T, Tang M, Pankhurst Q and Wells D 2010 Proc. IEEE Int. Ultrason. Symp.
[10] Vlaskou D, Mykhaylyk O, Krotz F, Hellwig N, Renner R, Schillinger U, Gleich B, Heidsieck A, Georg Schmitz G, Hensel K and Plank C 2010 Adv. Funct. Mater. 20 3881
[11] de Saint Victor M, Barnsley L C, Carugo D, Owen J, Coussios C C and Stride E 2018 Ultrasound Med. Biol. 45 1151
[12] Gao Y, Chan C U, Gu Q, Lin X, Zhang W, Yeo D C L, Alsema A M, Arora M, Chong M S K, Shi P, Ohl C D and Xu C 2016 NPG Asia Mater. 8 e260
[13] Beguin E, Gray M D, Logan K A, Nesbitt H, Sheng Y, Kamila S, Barnsley L C, Bau L, McHale A P, Callan J F and Stride E 2020 J. Control. Release 317 23
[14] Lajoinie G, Luan Y, Gelderblom E, Dollet B, Mastik F, Dewitte H, Lentacker I, de Jong N and Versluis M 2018 Comm. Phys. 1 1
[15] Fang Y, Zhang M, He W, Chen P, Cai X, Yang L, Gu N and Wu J 2011 Small 7 902
[16] Mulvana H, Eckersley R, Tang M X, Pankhurst Q and Stride E 2012 Ultrasound Med. Biol. 38 864
[17] Guo G, Lu L, Yin L, Tu J, Guo X, Wu J, Xu D and Zhang D 2014 Phys. Med. Biol. 59 6729
[18] Gu Y, Chen C, Tu J, Guo X, Wu H and Zhang D 2016 Ultrason. Sonochem. 29 309
[19] Zhao X, Quinto-Su P A and Ohl C D 2009 Phys. Rev. Lett. 102 024501
[20] Roovers S, Lajoinie G, De Cock I, Brans T, Dewitte H, Braeckmans K, Versluis M, De Smedt S and Lentacker I 2019 Biomaterials 217 119250
[21] Yang Y, Li Q, Guo X, Tu J and Zhang D 2020 Ultrason. Sonochem. 67 105096
[22] Sheng Y, Beguin E, Nesbitt H, Kamila S, Owen J, Barnsley L C, Callan B, O'Kane C, Nomikou N, Hamoudi R, Taylor M A, Love M, Kelly P, O'Rourke D, Stride E, McHale A P and Callan J F 2017 J. Control. Release 262 192
[23] Roovers S, Deprez J, Priwitaningrum D, Lajoinie G, Rivron N, Declercq H, De Wever O, Stride E, Le Gac S, Versluis M, Prakash J, De Smedt S C and Lentacker I 2019 J. Control. Release 316 79
[24] Barnsley L C, Carugo D, Aron M and Stride E 2017 Phys. Med. Biol. 62 2333
[25] Barnsley L C, Gray M D, Beguin E, Carugo D and Stride E 2018 Adv. Mater. Technol. 3 1800081
[26] Zhao L, Shi H, Bello I, Hu J, Wang C and Mo R 2022 Chin. Phys. B 31 034302
[27] Lind S J 2014 Phys. Fluids 26 061901
[28] Malvar S, Gontijo R G and Cunha F R 2018 J. Eng. Math. 108 143
[29] Chen J, Zhao L, Wang C and Mo R 2021 J. Magn. Magn. Mater. 538 168293
[30] Doinikov A A, Haac J F and Dayton P A 2009 Ultrasonics 49 269
[31] Zudin Y B, Isakov N S and Zenin V V 2014 J. Eng. Phys. Thermophys. 87 1
[32] Tomita Y, Robinson P B, Tong R P and Blake J R 2002 J. Fluid Mech. 466 259
[33] Doinikov A A 2002 Phys. Fluids 14 1420
[34] Kinefuchi K and Kobayashi H 2018 Phys. Fluids 30 062101
[35] Magnaudet J and Legendre D 1998 Phys. Fluids 10 550
[36] Vlachomitrou M and Pelekasis N 2021 Phys. Rev. Fluids 6 013601
[37] Sassaroli E and Hynynen K 2005 Phys. Med. Biol. 50 5293
[38] SotoÁ M, Peñas P, Lajoinie G, Lohse D and van der Meer D 2020 Phys. Rev. Fluids 5 063605
[39] Wang L, Tu J, Guo X, Xu D and Zhang D 2014 Chin. Phys. B 23 124302
[40] Nyborg W L 1958 J. Acoust. Soc. Am. 30 329
[41] Segers T and Versluis M 2014 Lab Chip 14 1705
[42] Dzaharudin F, Ali N M, Alias E A and Jamaludin U K 2018 MATEC Web of Conferences 225 04015
[43] Deng J, Yang R and Lu H 2021 Ultrason. Sonochem. 71 105371
[44] Beekers I, Van Rooij T, Van d S A F W, de Jong N, Verweij M D and Kooiman K 2019 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66 244
[45] Van der Meer S M, Dollet B, Voormolen M M, Chin C T, Bouakaz A, de Jong N, Versluis M and Lohse D 2007 J. Acoust. Soc. Am. 121 648
[46] Sassaroli E and Hynynen K 2005 Phys. Med. Biol. 50 5293
[47] Oguz H N and ProsperettiA 1998 J. Acoust. Soc. Am. 103 3301
[48] Garbin V, Cojoc D, Ferrari E, Di Fabrizio E, Overvelde M L J, van der Meer S M, de Jong N, Lohse D and Versluis M 2007 Appl. Phys. Lett. 90 114103
[49] Hosseinkhah N and Hynynen K 2012 Phys. Med. Biol. 57 785
[50] Mifsud J, Lockerby D A, Chung Y M and Jones G 2021 Phys. Fluids 33 122114
[51] Marmottant P and Hilgenfeldt S 2003 Nature 423 153
[52] Young J B, Schmiedel T and Kang W 1996 Phys. Rev. Lett. 77 4816
[53] Yasui K 1999 Phys. Rev. E 60 1759
[54] Behnia S, Mobadersani F, Yahyavi M, Rezavand A, Hoesinpour N and Ezzat A 2015 Chaos Solitons Fractals 78 194
[55] Yang Y, Pacia C P, Ye D, Yue Y, Chien C Y and Chen H 2021 Radiology 300 681
[1] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[2] Effect of magnetic field on expansion of ferrofluid-encapsulated microbubble
Zhiwei Du(杜芷玮), Fan Li(李凡), Ruiqi Pan(潘瑞琪), Runyang Mo(莫润阳), and Chenghui Wang(王成会). Chin. Phys. B, 2023, 32(6): 064302.
[3] Measurements of Majorana transition frequency shift in caesium atomic fountain clocks
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Fan Yang(杨帆), Yang Bai(白杨), Yong Guan(管勇), Si-Chen Fan(范思晨), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2023, 32(4): 040602.
[4] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[5] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[6] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[7] Inertial effect on minimum magnetic field for magnetization reversal in ultrafast magnetism
Xue-Meng Nan(南雪萌), Chuan Qu(屈川), Peng-Bin He(贺鹏斌), and Zai-Dong Li(李再东). Chin. Phys. B, 2023, 32(12): 127506.
[8] Periodical polarization reversal modulation in multiferroic MnWO4 under high magnetic fields
Congbin Liu(刘从斌), Jinbing Cheng(程晋炳), Junbao He(何俊宝), Yongsheng Zhu(朱永胜), Wan Chang(常婉), Xiaoyu Lu(路晓宇), Junfeng Wang(王俊峰), Meiyan Cui(崔美艳), Jinshu Huang(黄金书), Dawei Zhou(周大伟), Rui Chen(陈瑞), Hao Jiang(江浩), Chuangchuang Ma(马创创), Chao Dong(董超), and Yongsong Luo(罗永松). Chin. Phys. B, 2023, 32(12): 127505.
[9] A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Zixiao Ma(马子晓), Ruming Hu(胡如明), Baolin Zhang(张宝林), Yanmei Hao(郝艳梅), Huaqing Zhang(张华青), Yao Huang(黄垚), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 110704.
[10] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[11] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[12] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[13] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[14] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[15] Increasing the ·OH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution
Chao Li(李超), De-Long Xu(徐德龙), Wen-Quan Xie(谢文泉), Xian-Hui Zhang(张先徽), and Si-Ze Yang(杨思泽). Chin. Phys. B, 2022, 31(4): 048706.
No Suggested Reading articles found!