Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich1,†, S Zdravković1, A V Chizhov2,3, and Z Ivić1,4,5
1 University of Belgrade, Vinča Institute of Nuclear Sciences, P. O. Box 522, Belgrade 11001, Serbia; 2 Joint Institute for Nuclear Research, Laboratory for Radiation Biology, Dubna 141980, Russia; 3 Dubna State University, Dubna 141980, Russia; 4 Department of Physics, University of Crete, P. O. Box 2208, Heraklion 71003, Greece; 5 National University of Science and Technology MISiS, Leninsky prosp. 4, Moscow 119049, Russia
Abstract We investigate the properties of the excess charge (electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.
Fund: Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST "MISiS" (Grant No. K2-2019-010), implemented by a governmental decree dated 16th of March 2013, N 211, and by the Project within the Cooperation Agreement between the JINR, Dubna, Russian Federation and Ministry of Education and Science of the Republic of Serbia.
Corresponding Authors:
D Chevizovich
E-mail: cevizd@vin.bg.ac.rs
Cite this article:
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić Charge self-trapping in two strand biomolecules: Adiabatic polaron approach 2023 Chin. Phys. B 32 010506
[1] Fröhlich H and Kremer F (ed) 1983 Coherent Excitations in Biological Systems (Berlin: Springer) [2] Davydov A S 1982 Biology and Quantum Mechanics (New York: Pergamon Press) [3] Petrov E G 1984 Physics of Charge Transfer in Biological Systems (Kiev: Naukova Dumka) (in Russian) [4] Davydov A S 1985 Solitons in Molecular Systems (Dordrecht: Reidel) [5] Scott A C 1992 Phys. Rep.217 1 [6] Davydov A S and Kislukha N I 1973 Phys. Status. Solidi B59 465 [7] Davydov A S and Kislukha N I 1976 Zh. Eksp. Teor. Fiz.71 1090 [8] Christiansen P L and Scott A C (ed) 1990 Davidov's Soliton Revisited (New York: Plenum) [9] Genereux J C, Boal A K and Barton J K 2010 J. Am. Chem. Soc.132 891 [10] Kalosakas G 2011 Phys. Rev. E84 051905 [11] Giese B 2000 Acc. Chem. Res.33 631 [12] Schuster G B 2000 Acc. Chem. Res.33 253 [13] Hu P J, Wang S X, Chen X F, Gao X H, Fang T F, Guo A M and Sun Q F 2022 Phys. Rev. Appl.17 024074 [14] Henning D, Archilla J F R and Agarwal J 2003 Physica D180 256 [15] Wang R, Zhang C X, Zhou Y Q and Kong L M 2011 Chin. Phys. B20 117201 [16] Bruinsma R, Gruner G, D'Orsogna M R and Rudnick J 2000 Phys. Rev. Lett.85 4393 [17] Ly D, Kan Y, Armitage B and Schuster G B 1996 J. Am. Chem. Soc.118 8747 [18] Jortner J 1998 Proc. Natl. Acad. Sci. USA95 12759 [19] Ly D, Sani L and Shuster G B 1999 J. Am. Chem. Soc.121 9400 [20] Conwell E M and Rakhmanova S V 2000 Proc. Natl. Acad. Sci. USA97 4556 [21] Conwell E M 2005 Proc. Natl. Acad. Sci. USA102 8795 [22] de Pablo P J, Moreno-Herrero F, Colchero J, Gomez Herrero J, Herrero P, Baro A M, Ordejon P, Soler J M and Artacho E 2000 Phys. Rev. Lett.85 4992 [23] Jortner J, Bixon M, Langenbacher T and Michel-Beyerle M E 1998 Proc. Natl. Acad. Sci. USA95 12759 [24] Ye Y J, Chen R S, Martinez A, Otto P and Ladik J 1999 Solid State Commun.112 139 [25] Yu Z G and Song X Y 2001 Phys. Rev. Lett.86 6018 [26] Hjort M and Stafstrom S 2001 Phys. Rev. Lett.87 228101 [27] Apalkov V, Wang X F and Chakraborty T 2007 Charge Migration in DNA: Perspectives from Physics, Chemistry and Biology (Berlin: Springer) [28] Emin D 3973 Phys. Rev. B33 3973 [29] Holstein T 1959 Ann. Phys.8 325 [30] Rashba E I, in: Rashba E I, Struge M (eds) 1982 Excitons (Amsterdam: North-Holland) [31] Davydov A S 1979 Phys. Scr.20 387 [32] Schuttler H B and Holstein T 1986 Ann. Phys. (N.Y.)166 93 [33] Chevizovich D, Michieletto D, Mvogo A, Zakiryanov F and Zdravkovic S 2020 R. Soc. Open. Sci.7 200774 [34] Gogolin A A 1988 Phys. Rep.157 347 [35] Castro Neto A H and Caldeira A O 1992 Phys. Rev. B46 8858 [36] Cevizovic D, Ivic Z, Przulj Z, Tekic J and Kapor D 2013 Chem. Phys.426 9 [37] Pang X F 2000 Phys. Rev. E62 6989 [38] Brizhik L, Eremko A, Piette B and Zakrzewski W 2004 Phys. Rev. E70 031914 [39] Cevizovic D, Galovic S, Reshetnyak A and Ivic Z 2013 Chin. Phys. B22 060501 [40] Yoo K H, Ha D H, Lee J O, et al. 2001 Phys. Rev. Lett.87 198102 [41] Maniadis P, Kalosakas G, Rasmussen K O and Bishop A R 2003 Phys. Rev. B68 174304 [42] Pekar S I 1951 Issledovanaia po Elektronnoi Teorii Kristalov (Moskva: Gosteh. izd.) [43] Brown D W and Ivić Z 1989 Phys. Rev. B40 9876 [44] Salkola M I, Bishop A R, Kenkre V M and Raghavan S 1995 Phys. Rev. B 52 R3824 [45] Pekar S I 1946 Zh. Eksp. Teor. Fiz.16 335 [46] Landau L D and Pekar S I 1948 Zh. Eksp. Teor. Fiz.18 419 [47] Zekovic S, Zdravkovic S and Ivic Z 2011 J. Phys. Conf. Ser.329 012015 [48] Hawke L, Kalosakas G and Simserides C 2010 Eur. Phys. J. E32 291 [49] Voytuk A A, Siriwong K and Rosh N 2001 Phys. Chem. Chem. Phys.3 5421 [50] Grozema F C, Siebbeles L D A, Berlin Y A and Ratner M A 2002 ChemPhysChem3 536 [51] Park J H, Choi H Y and Conwell E M 2004 J. Phys. Chem.108 19483 [52] Yamada H and Iguchi K 2010 Adv. Condens. Matter Phys.2010 380710 [53] Kitoh-Nikioha H and Ando K 2015 Chem. Phys. Lett.621 96 [54] Kivshar Yu S and Agrawal G P 2003 Optical Solitons from Fibers to Photonic Crystals (New York: Academic Press) [55] Shi X, Malomed B A, Ye F and Chen X 2012 Phys. Rev. A85 053839 [56] Kosevich Yu A, Manevitch L I and Savin A V 2008 Phys. Rev. E77 046603 [57] Evangelides S G, Mollenauer L F, Gordon J P and Bergano N S J 1992 Lightw. Technol.10 28 [58] Soto-Crespo J M, Akhmediev N and Ankiewicz A 1995 J. Opt. Soc. Am. B12 1100 [59] Akhmediev N N and Ostrovskaya E A 1996 Opt. Commun.132 190 [60] Song C Q, Xiao D M and Zhu Z N 2017 Chin. Phys. B26 100204
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.