Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120502    DOI: 10.1088/1674-1056/ac7a0d
GENERAL Prev   Next  

Resonance and antiresonance characteristics in linearly delayed Maryland model

Hsinchen Yu(于心澄)1,2,3, Dong Bai(柏栋)4, Peishan He(何佩珊)1,2, Xiaoping Zhang(张小平)1,2,†, Zhongzhou Ren(任中洲)4,5,‡, and Qiang Zheng(郑强)6
1 State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China;
2 CNSA Macau Center for Space Exploration and Science, Macau, China;
3 Department of Physics, Nanjing University, Nanjing 210008, China;
4 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
5 Key Laboratory of Advanced Micro-Structure Materials(MOE), Tongji University, Shanghai 200092, China;
6 School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
Abstract  The Maryland model is a critical theoretical model in quantum chaos. This model describes the motion of a spin-1/2 particle on a one-dimensional lattice under the periodical disturbance of the external delta-function-like magnetic field. In this work, we propose the linearly delayed quantum relativistic Maryland model (LDQRMM) as a novel generalization of the original Maryland model and systematically study its physical properties. We derive the resonance and antiresonance conditions for the angular momentum spread. The "characteristic sum" is introduced in this paper as a new measure to quantify the sensitivity between the angular momentum spread and the model parameters. In addition, different topological patterns emerge in the LDQRMM. It predicts some additions to the Anderson localization in the corresponding tight-binding systems. Our theoretical results could be verified experimentally by studying cold atoms in optical lattices disturbed by a linearly delayed magnetic field.
Keywords:  quantum chaos      dynamical localization      resonance and topology  
Received:  12 January 2022      Revised:  19 April 2022      Accepted manuscript online:  18 June 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
Fund: Project supported by the Science and Technology Development Fund (FDCT) of Macau, China (Grant Nos. 0014/2022/A1 and 0042/2018/A2) and the National Natural Science Foundation of China (Grant Nos. 11761161001, 12035011, and 11975167).
Corresponding Authors:  Xiaoping Zhang, Zhongzhou Ren     E-mail:  xpzhangnju@gmail.com;zren@tongji.edu.cn

Cite this article: 

Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强) Resonance and antiresonance characteristics in linearly delayed Maryland model 2022 Chin. Phys. B 31 120502

[1] Chirikov B V 1979 Phys. Rep. 52 263
[2] Fishman S, Grempel D R and Prange R E 1982 Phys. Rev. Lett. 49 509
[3] Grempel D R, Prange R E and Fishman S 1984 Phys. Rev. A 29 1639
[4] Grempel D R, Fishman S and Prange R E 1982 Phys. Rev. Lett. 49 833
[5] Prange R E, Grempel D R and Fishman S 1984 Phys. Rev. B 29 6500
[6] Simon B 1985 Ann. Phys. 159 157
[7] Berry M 1984 Physica D 10 369
[8] Altland A and Zirnbauer M R 1996 Phys. Rev. Lett. 77 4536
[9] Dana I and Dorofeev D L 2006 Phys. Rev. E 73 026206
[10] Casati G and Ford J 1979 Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Physics (Berlin, Heidelberg: Springer)
[11] Khanna F and Matrasulov D 2006 Non-linear dynamics and fundamental interactions, chaotic dynamics of the relativistic kicked rotor (Dordrecht: Springer)
[12] Sokolov V V, Zhirov O V, Alonso D and Casati G 2000 Phys. Rev. Lett. 84 3566
[13] Billam T P and Gardiner S A 2009 Phys. Rev. A 80 023414
[14] Zhang Z J, Tong P Q, Gong J B and Li B W 2012 Phys. Rev. Lett. 108 070603
[15] Zhao W L, Gong J B, Wang W G, Casati G L, Liu J and Fu L B 2016 Phys. Rev. A 94 053631
[16] Moore F L, Robinson J C, Bharucha C F, Sundaram B and Raizen M G 1995 Phys. Rev. Lett. 75 4598
[17] D'Arcy M B, Godun R M, Oberthaler M K, Cassettari D and Summy G S 2001 Phys. Rev. Lett. 87 74102
[18] Kanem J F, Maneshi S, Partlow M, Spanner M and Steinberg A M 2007 Phys. Rev. Lett. 98 083004
[19] Duffy G J, Parkins S, Müller T, Sadgrove M, Leonhardt R and Wilson A C 2004 Phys. Rev. E 70 056206
[20] Dittrich T and Graham R 1990 Europhys. Lett. 11 589
[21] Ammann H, Gray R, Shvarchuck I and Christensen N 1998 Phys. Rev. Lett. 80 4111
[22] Sadgrove M, Wimberger S, Parkins S and Leonhardt R 2005 Phys. Rev. Lett. 94 174103
[23] Sadgrove M, Hilliard A, Mullins T, Parkins S and Leonhardt R 2004 Phys. Rev. E 70 036217
[24] Williams M E, Sadgrove M P, Daley A J, Gray R N, Tan S M, Parkins A S, Christensen N and Leonhardt R 2004 J. Opt. B: Quantum Semiclass. Opt. 6 28
[25] McDowall P, Hilliard A, McGovern M, Grünzweig T and Andersen M 2009 New J. Phys. 11 123021
[26] Manai I, Clément J F, Chicireanu R, Hainaut C, Garreau J C, Szriftgiser P and Delande D 2015 Phys. Rev. Lett. 115 240603
[27] Vant K, Ball G and Christensen N 2000 Phys. Rev. E 61 5994
[28] Cohen D 1991 Phys. Rev. A 43 639
[29] Ott E, Antonsen T M and Hanson J D 1984 Phys. Rev. Lett. 53 2187
[30] Cohen D 1991 Phys. Rev. A 44 2292
[31] Cohen D 1991 Phys. Rev. Lett. 67 1945
[32] Shiokawa K and Hu B L 1995 Phys. Rev. E 52 2497
[33] Schomerus H and Lutz E 2008 Phys. Rev. A 77 062113
[34] Borgonovi F and Shepelyansky D L 1996 Europhys. Lett. 35 517
[35] Cohen D 1994 J. Phys. A 27 4805
[36] Dittrich T and Graham R 1990 Ann. Phys. 200 363
[37] Dittrich T and Graham R 1990 Phys. Rev. A 42 4647
[38] Dyrting S and Milburn G J 1995 Phys. Rev. A 51 3136
[39] Benvenuto F, Casati G, Pikovsky A S and Shepelyansky D L 1991 Phys. Rev. A 44 R3423
[40] Shepelyansky D L 1993 Phys. Rev. Lett. 70 1787
[41] Pikovsky A S and Shepelyansky D L 2008 Phys. Rev. Lett. 100 094101
[42] García-Mata I and Shepelyansky D L 2009 Phys. Rev. E 79 026205
[43] Flach S, Krimer D O and Skokos C 2009 Phys. Rev. Lett. 102 024101
[44] Mulansky M, Ahnert K, Pikovsky A and Shepelyansky D L 2009 Phys. Rev. E 80 056212
[45] Ermann L and Shepelyansky D L 2014 J. Phys. A 47 335101
[46] Mieck B and Graham R 2004 J. Phys. A 37 L581
[47] Gligorić G, Bodyfelt J D and Flach S 2011 Europhys. Lett. 96 30004
[48] Zhao Q F, Müller C A and Gong J B 2014 Phys. Rev. E 90 022921
[49] Rozenbaum E B and Galitski V 2017 Phys. Rev. B 95 064303
[50] Graham R and Kolovsky A R 1996 Phys. Lett. A 222 47
[51] Klappauf B G, Oskay W H, Steck D A and Raizen M G 1998 Phys. Rev. Lett. 81 1203
[52] d'Arcy M B, Godun R M, Oberthaler M K, Summy G S, Burnett K and Gardiner S A 2001 Phys. Rev. E 64 056233
[53] Zhang C, Liu J, Raizen M G and Niu Q 2004 Phys. Rev. Lett. 92 054101
[54] Gadway B, Reeves J, Krinner L and Schneble D 2013 Phys. Rev. Lett. 110 190401
[55] Yu H C, Ren Z Z and Zhang X 2019 Chin. Phys. B 28 020504
[1] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[2] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[3] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[4] Effect of temporal disorder on wave packet dynamics in one-dimensional kicked lattices
Yuting Wang(王雨婷), Yi Gao(高绎), Peiqing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120503.
[5] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[6] Level spacing statistics for two-dimensional massless Dirac billiards
Huang Liang (黄亮), Xu Hong-Ya (徐洪亚), Lai Ying-Cheng (来颖诚), Celso Grebogi. Chin. Phys. B, 2014, 23(7): 070507.
[7] Dynamical localization effect in a coupled quantum dot array driven by an AC magnetic field
Xia Jun-Jie(夏俊杰) and Nie Yi-Hang(聂一行) . Chin. Phys. B, 2011, 20(9): 097306.
[8] Chaos and quantum Fisher information in the quantum kicked top
Wang Xiao-Qian(王晓茜), Ma Jian(马健), Zhang Xi-He(张喜和), and Wang Xiao-Guang(王晓光). Chin. Phys. B, 2011, 20(5): 050510.
[9] Quantum control of two interacting electrons in a coupled quantum dot
Song Hong-Zhou(宋红州), Zhang Ping(张平), Duan Su-Qing(段素青), and Zhao Xian-Geng(赵宪庚). Chin. Phys. B, 2006, 15(9): 2130-2141.
[10] Effect of electron-phonon interactions on dynamical localization of semiconductor superlattices
Wang Zhi-Gang (王志刚), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2005, 14(6): 1232-1237.
[11] Effects of bias on dynamics of an AC-driven two-electron quantum-dot molecule
Wang Li-Min (王立民), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚), Liu Cheng-Shi (刘承师). Chin. Phys. B, 2005, 14(2): 409-419.
[12] Effect of external noise on the dynamical localization of two coupling electrons in quantum dot array
He An-Min (何安民), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2005, 14(11): 2320-2324.
[13] Dynamical properties of two-band superlattices with strong interband coupling in real space under the action of ac and dc-ac fields
Duan Su-Qing (段素青), Wang Zhi-Gang (王志刚), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2003, 12(8): 899-904.
[14] DYNAMICAL BEHAVIOUR OF THE SUPERCURRENT IN MESOSCOPIC JOSEPHSON JUNCTIONS
Yu Kai-zhi (俞开智), Zou Jian (邹健), Shao Bin (邵彬). Chin. Phys. B, 2001, 10(12): 1154-1156.
No Suggested Reading articles found!