Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077303    DOI: 10.1088/1674-1056/24/7/077303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale

Li Zhi-Quan (李志全), Piao Rui-Qi (朴瑞琦), Zhao Jing-Jing (赵晶晶), Meng Xiao-Yun (孟晓云), Tong Kai (童凯)
Institute of Electrical Engineering, Yanshan University, Qinghuangdao 066004, China
Abstract  A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale. By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology.
Keywords:  surface plasmon      hybrid plasmonic waveguides      nanolasers  
Received:  18 October 2014      Revised:  07 February 2015      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61172044) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014501150).
Corresponding Authors:  Li Zhi-Quan     E-mail:  lzq54@ysu.edu.cn

Cite this article: 

Li Zhi-Quan (李志全), Piao Rui-Qi (朴瑞琦), Zhao Jing-Jing (赵晶晶), Meng Xiao-Yun (孟晓云), Tong Kai (童凯) A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale 2015 Chin. Phys. B 24 077303

[1] Duan X F, Huang Y, Agarwal R and Lieber C M 2003 Nature 421 241
[2] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[3] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[4] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[5] Maslov A V and Ning C Z 2007 Proc. SPIE 6468 646801
[6] Hill M T, Oei Y S, Smalbrugge B, Zhu Y, de Vries T, van Veldhoven P J, van Otten F W M, Eijkemans T J, Turkiewicz J P, de Waardt H, Geluk E J, Kwon S H, Lee Y H, Notzel R and Smit M K 2007 Nat. Photon. 1 589
[7] Berini P 2009 Adv. Opt. Photon. 1 484
[8] Liu J T, Xu B Z, Zhang J, Cai L K and Song G F 2012 Chin. Phys. B 21 107303
[9] Huang H, Zhao Q, Jiao J, Liang G F and Huang X P 2013 Acta Phys. Sin. 62 135201 (in chinese)
[10] Hu R, Lang P L, Zhao Y F, Duan G Y, Wang L L, Dai J, Chen Z, Yu L and Xiao J H 2014 Chin. Phys. Lett. 31 095202
[11] Gong H, Liu Y M, Yu Z Y, Wu X and Yin H Z 2014 Chin. Phys. B 23 046103
[12] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
[13] Lv H B, Liu Y M, Yu Z Y, Ye C W and Wang J 2014 Chin. Opt. Lett. 12 112401
[14] Zhu L 2010 IEEE Photon. Technol. Lett. 22 535
[15] Bian Y S, Zheng Z, Zhao X, Liu L, Liu J S, Zhu J S and Zhou T 2013 Opt. Commun. 287 245
[16] Bian Y S, Zheng Z, Liu Y, Zhu J S and Zhou T 2011 IEEE Photon. Technol. Lett. 23 884
[17] Bian Y S, Zheng Z, Liu Y, Liu J S, Zhu J S and Zhou T 2011 Opt. Express 19 22417
[18] Bian Y S, Zheng Z, Zhao X, Su Y L, Liu L, Liu J S, Zhu J S and Zhou T 2012 IEEE Photon. Technol. Lett. 24 1279
[19] Bian Y S, Zheng Z, Zhao X, Su Y L, Liu L, Liu J S, Zhu J S and Zhou T 2013 IEEE J. Sel. Top. Quantum Electron. 19 4800106
[20] Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Xiao J, Liu J S, Zhu J S and Zhou T 2013 J. Lightw. Technol. 31 1973
[21] Lee M C M and Wu M C 2006 J. Microelectromech. Syst. 15 338
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
No Suggested Reading articles found!