Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110501    DOI: 10.1088/1674-1056/ac7869
GENERAL Prev   Next  

Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application

Yong-Bing Hu(胡永兵)1, Xiao-Min Yang(杨晓敏)1, Da-Wei Ding(丁大为)1,2,†, and Zong-Li Yang(杨宗立)1
1 School of Electronics and Information Engineering, Anhui University, Hefei 230601, China;
2 National Engineering Research Center for Agro-Ecological Big Data Analysis&Application, Anhui University, Hefei 230601, China
Abstract  Multi-link networks are universal in the real world such as relationship networks, transportation networks, and communication networks. It is significant to investigate the synchronization of the network with multi-link. In this paper, considering the complex network with uncertain parameters, new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization (FTCPS). In addition, based on fractional-order Lyapunov functional method and finite-time stability theory, the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters. Meanwhile, numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters. Finally, the network is applied to image encryption, and the security analysis is carried out to verify the correctness of this method.
Keywords:  multi-links network      fractional order      complex-valued network      finite-time complex projective synchronization      image encryption  
Received:  04 May 2022      Revised:  07 June 2022      Accepted manuscript online:  14 June 2022
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Da-Wei Ding     E-mail:  dwding@ahu.edu.cn

Cite this article: 

Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立) Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application 2022 Chin. Phys. B 31 110501

[1] Zhao H, Li L X, Xiao J H, Yang Y X and Zheng M W 2017 Chaos, Solitons and Fractals 104 268
[2] Zhao H, Li L X, Peng H P, Xiao J H and Yang Y X 2015 Eur. Phys. J. B 88 45
[3] Zhao H, Li L X, Peng H P, Xiao J H, Yang Y X and Zheng M W 2016 Nonlinear Dyn. 83 1437
[4] Hu Q Y, Peng H P, Wang Y G, Hu Z R and Yang Y X 2012 Nonlinear Dyn. 69 1813
[5] Xu Y, Wang Q, Li W X and Feng J Q 2021 Mathematical Methods in the Applied Sciences 44 3356
[6] Peng H P, Wei N, Li L X, Xie W S and Yang Y X 2010 Phys. Lett. A 374 2335
[7] Li L X, Kurths J, Peng H P, Yang Y X and Luo Q 2013 Eur. Phys. J. B 86 125
[8] Wang X and Miao P 2020 Int. J. Control Autom. Syst. 18 1993
[9] Li L X, Li W W, Kurths J, Luo Q, Yang Y X and Li S D 2015 Chaos, Solitons and Fractals 72 20
[10] Li K Z, He E, Zeng Z R and Tse C K 2013 Chin. Phys. B 22 070504
[11] Wang S G and Yao H X 2012 Chin. Phys. B 21 050508
[12] Aadhithiyan S, Raja R, Zhu Q X and Alzabut J 2021 Neural Process. Lett. 53 1035
[13] Wang J Y, Zhang H G, Wang Z S and Liang H J 2013 Chin. Phys. B 22 090504
[14] Sha H S, Wang G J, Hao T and Wang Z X 2020 Complexity 2020 3742876
[15] Ding D W, Yao X L and Zhang H W 2020 Neural Process. Lett. 51 325
[16] Yang X S and Cao J D 2010 Appl. Math. Model. 34 3631
[17] Li J R, Jiang H J, Hu C and Yu J 2018 Chaos, Solitons and Fractals 114 291
[18] Wang W P, Peng H P, Li L X, Xiao J H and Yang Y X 2015 Neural Process. Lett. 41 71
[19] Zhao H, Li L X, Peng H P, Xiao J H, Yang Y X and Zheng M W 2017 Modern Phys. Lett. B 31 1750008
[20] Zheng M W, Li L X, Peng H P, Xiao J H, Yang Y X, Zhang Y P and Zhao H 2019 Commun. Nonlinear Sci. Numer. Simulat. 67 108
[21] Li H L, Cao J D, Hu C, Zhang L and Wang Z L 2019 Neurocomputing 356 31
[22] Bao H B, Park J H and Cao J D 2021 IEEE Transactions on Neural Networks and Learning Systems 32 3230
[23] Ding D W, Yan J, Wang N and Liang D 2017 Commun. Theor. Phys. 68 366
[24] Ding D W, Yan J, Wang N and Liang D 2017 Chaos, Solitons and Fractals 104 41
[25] Yang S, Yu J, Hu C and Jiang H J 2018 Neural Networks 104 104
[26] Xu Y, Li Y Z and Li W X 2020 Commun. Nonlinear Sci. Numer. Simulat. 85 105239
[27] Yang X S and Cao J D 2014 Appl. Math. Comput. 227 480
[28] Banu L J and Balasubramaniam P 2016 Neurocomputing 179 126
[29] Zhang C, Wang X Y, Luo C, Li J Q and Wang C P 2018 Physica A 494 251
[30] Wu Z Y, Liu D F and Ye Q L 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 273
[31] Li H L, Cao J D, Jiang H J and Alsaedi A 2019 Physica A 533 122027
[32] Du L, Yang Y and Lei Y M 2018 Appl. Math. Mech.-Engl. Ed. 39 353
[33] Yang X Y, Li X D and Duan P Y 2022 Neural Comput. Appl. 34 5097
[34] Zhang L M, Sun K H, Liu W H and He S B 2017 Chin. Phys. B 26 100504
[35] Wang Y Z and Yang F F 2021 Phys. Scr. 96 035209
[36] Kumar M, lqbal A and Kumar P 2016 Signal Process. 125 187
[37] Chai X L, Gan Z H, Yuan K, Chen Y R and Liu X X 2019 Neural Comput. Appl. 31 219
[38] Xu Y and Li W X 2020 Physica A 549 123903
[39] Wu Z Y and Fu X C 2013 Nonlinear Dyn. 72 9
[40] Xu Q, Zhuang S X, Liu S J and Xiao J 2016 Neurocomputing 186 119
[41] Ding D W, Yao X L and Wang N 2019 Int. J. Theor. Phys. 58 2357
[42] Ji G J, Hu C, Yu J and Jiang H J 2018 J. Frankl. Inst. 355 4665
[43] Li H L, Cao J D, Jiang H J and Alsaedi A 2018 J. Frankl. Inst. 355 5771
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[6] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[7] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[8] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[9] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[10] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[11] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[12] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[13] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[14] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
[15] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
No Suggested Reading articles found!