CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O) |
Ting Zhou(周婷)1,2, Xing Gao(高星)1,2,†, Zhiwei Ma(马志伟)1,2, Hailong Chang(常海龙)1,2, Tielong Shen(申铁龙)1,2, Minghuan Cui(崔明焕)1,2, and Zhiguang Wang(王志光)1,2,† |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Classical molecular dynamics simulations with global neural network machine learning potential are used to study early stage oxidation and dissolution behaviors of bcc Fe surfaces contacting with stagnant oxygen dissolved liquid lead-bismuth eutectic (LBE-O). Both static and dynamic simulation results indicate that the early stage oxidation and dissolution behaviors of bcc Fe show strong orientation dependence under the liquid LBE environments, which may explain the experimental observations of uneven interface between iron-based materials and liquid LBE. Our investigations show that it is the delicate balance between the oxide growth and metal dissolution that leads to the observed corrosion anisotropy for bcc Fe contacting with liquid LBE-O.
|
Received: 06 June 2022
Revised: 12 July 2022
Accepted manuscript online: 22 July 2022
|
PACS:
|
68.08.-p
|
(Liquid-solid interfaces)
|
|
28.41.Qb
|
(Structural and shielding materials)
|
|
28.52.Fa
|
(Materials)
|
|
28.52.Av
|
(Theory, design, and computerized simulation)
|
|
Fund: We deeply appreciate Professor Zhipan Liu and Professor Cheng Shang at Fudan University for their help in training the quaternary G-NN potential used in our MD simulations. This work was supported by the National Natural Science Foundation of China (Grant No. U1832206). |
Corresponding Authors:
Xing Gao, Zhiguang Wang
E-mail: xinggao@impcas.ac.cn;zhgwang@impcas.ac.cn
|
Cite this article:
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光) Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O) 2023 Chin. Phys. B 32 036801
|
[1] Parihar S S, Meyerheim H L, Mohseni K, Ostanin S, Ernst A, Jedrecy N, Felici R and Kirschner J 2010 Phys. Rev. B 81 075428 [2] Soldemo M, Lundgren E and Weissenrieder J 2016 Surf. Sci. 644 172 [3] Soldemo M, Niu Y, Zakharov A, Lundgren E and Weissenrieder J 2015 Surf. Sci. 639 13 [4] Qin F, Magtoto N P, Garza M and Kelber J A 2003 Thin Solid Films 444 179 [5] Zhang L, Szpunar J A, Dong J, Oj O A and Wang X 2018 Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 49 919 [6] Gray J J, Dasher B S and Orme C A 2006 Surf. Sci. 600 2488 [7] Dong S D, Chen X, Gussev M, Leonard K and Sant G 2010 Mater. Des. 191 108583 [8] Stephan-Scherb C, Menneken M, Weber K, Jacome LA and Nolze G 2020 Corrosion Sci. 174 108809 [9] Alemberti A 2016 Engineering 2 59 [10] Lorusso P, Bassini S, Del Nevo A, Di Piazza I, Giannetti F, Tarantino M and Utili M 2018 Prog. Nucl. Energy 105 318 [11] Lillard R S and P A Pint 2020 Comprehensive Nuclear Materials (Amerstadam: Elsevier) pp. 1-32 [12] Concetta F 2015 Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies (Nuclear Energy Agency) pp. 431-453 [13] Martinelli L, Ginestar K, Botton V, Delisle C and Balbaud-Célériera F 2020 Corrosion Sci. 176 108897 [14] Lambrinou K, Charalampopoulou E, Tom V, Delville R and Schryvers N 2017 J. Nucl. Mater. 490 9 [15] Schroer C, Wedemeyer O, Novotny J, Skrypnik A and Juergen K 2014 Corrosion Sci. 84 113 [16] Zhang J S, Hosemann P and Maloy S 2010 J. Nucl. Mater. 404 82 [17] Zhang J S and Li N 2007 Corrosion Sci. 49 4154 [18] Gong X, Chen J J, Xiang C Y, Yu Z Y., Gong H W and Yin Y 2021 Corrosion Sci. 183 109346 [19] Xiao J, Gong X, Xiang C Y, Yu Z Y, Wang H, Zhao K, Liu C H, Zhou H, Qiu Y and Yin Y 2021 J. Nucl. Mater. 549 152852 [20] Martinelli L, Balbaud-C F, Terlain A, Delpech S, Santarini G, Favergeon J, Moulin G, Tabarant M and Picard G 2008 Corrosion Sci. 50 2523 [21] Zhang J S and Li N 2008 J. Nucl. Mater. 373 351 [22] Xu Y C, Song C, Zhang Y, Liu C S, Pan B C and Wang Z G 2014 Phys. Chem. Chem. Phys 16 16837 [23] Subbaraman R, Deshmukh S A and Sankaranarayana S K R S 2013 J. Phys. Chem. C 117 5195 [24] Zhou T, Gao X, Ma Z W, Chang H L, Shen T L and Wang Z G 2021 J. Nucl. Mater. 555 153107 [25] Kang P L, Shang C and Liu Z P 2020 Acc. Chem. Res. 53 2119 [26] Shang C, Zhang X J and Liu Z P 2014 Phys. Chem. Chem. Phys 16 17845 [27] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M, Tranchida J, Trott C and Plimpton S J 2021 Comput. Phys. Commun. 271 108171 [28] Pablo Palafox-Hernandez J and Laird B B 2010 Acta Mater. 59 3137 [29] Forti M, Alonso P R, Gargano P H, Balbuena P B and Rubiolo G H 2016 Surf. Sci. 647 55 [30] Pearson W B 1967 A Handbook of Lattice Spacings and Structures of Metals and Alloys (New York: Pergamon Press) pp. 20-50 [31] Zuo E X, Dou X L, Chen Y Y, Zhu W J, Jiang G, Mao A J and Du J G 2021 Surf. Sci. 712 121880 [32] Huang Y, Hu C W, Xiao Z G, Gao N, Wang Q T, Liu Z X, Hu W Y and Deng H Q 2022 Appl. Surf. Sci. 580 152300 [33] Boer F R, Boom R, Mattens W C M, Miedema A R and Niessen A K 1988 Cohesion in Metals: Transition Metal Alloys (Amerstadam: Elsevier) [34] Yin H, Wu Y L, Hou J T, Yan X R, Li Z H, Zhu C W, Zhang J, Feng X G, Tan W F and Liu F 2020 Chem. Geol. 532 119378 [35] Balbaud-Célérier F and Terlain A 2004 J. Nucl. Mater. 335 204 [36] Banerjee S 1974 Proceedings of the Fifth International Congress on Metallic Corrosion Tokyo, Japan [37] Gao Y, Takahashi M and Nomura M 2015 Mech. Eng. J. 2 15-00149 [38] Li D D, Song C, He H, Liu C S, Pan B C and Wu Y 2013 J. Nucl. Mater. 437 62 [39] Ganesan R, Gnanasekaran T and Srinivasa R S 2006 J. Nucl. Mater. 349 133 [40] Sendja B T, Castillo N and Portales R L 2021 Physica B 617 413128 [41] Shi Q Q, Liu J, Luan H, Yang Z, Wang W, Yan W, Shan Y and Yang K 2015 J. Nucl. Mater. 457 135 [42] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950 [43] Yeliseyeva O, Tsisar V and Benamati G 2008 Corrosion Sci. 50 1672 [44] Benamati G, Fazio C, Piankova H and Rusanov A 2002 J. Nucl. Mater. 301 23 [45] Gómez Briceo D, Crespo L S, Martn Muoz F J and Arroyo F H 2002 J. Nucl. Mater. 303 137 [46] Xie YS, Artymowicz D M, Lopes P P, Aiello A, Wang D, Hart J L, Anber E, Taheri M L, Zhuang H L Newman R C and Sieradzki K 2021 Nat. Mater. 20 789 [47] Bastek P D, Newman R C and Kelly R G 1993 J. Electrochem. Soc. 140 1884 [48] Ma Z W, Shen T L, Wang Z G, Zhou T, Gao X and Chang H L 2022 Appl. Surf. Sci. 578 151910 [49] Tsisar V, C. Schroer C, Wedemeyer O, Skrypnik A and Konys J 2016 J. Nucl. Mater. 468 305 [50] Tsisar V, Schroer C, Wedemeyer O, Skrypnik A and Konys J 2017 J. Nucl. Mater. 494 422 [51] Davies R, Edwards D, Grafe J, Gilbert L, Davies P, Hutchings G and Bowker M 2011 Sur. Sci. 605 1754 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|