Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034303    DOI: 10.1088/1674-1056/ac8727
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable topological interface states and resonance states of surface waves based on the shape memory alloy

Shao-Yong Huo(霍绍勇)1, Long-Chao Yao(姚龙超)1, Kuan-Hong Hsieh(谢冠宏)2, Chun-Ming Fu(符纯明)1,†, Shih-Chia Chiu(邱士嘉)2,‡, Xiao-Chao Gong(龚小超)2, and Jian Deng(邓健)1
1 College of Mechanical Engineering, University of South China, Hengyang 421001, China;
2 1MORE INC, Shenzhen 518000, China
Abstract  Topological interface state (TIS) of elastic wave has attracted significant research interest due to its potential prospects in strengthening acoustic energy and enhancing the signal accuracy of damage identification and quantification. However, previous implementations on the interface modes of surface waves are limited to the non-adjustable frequency band and unalterable mode width. Here, we demonstrate the tunable TIS and topological resonance state (TRS) of Rayleigh wave by using a shape memory alloy (SMA) stubbed semi-infinite one-dimensional (1D) solid phononic crystals (PnCs), which simultaneously possesses the adjustable mode width. The mechanism of tunability stems from the phase transformation of the SMA between the martensite at low temperature and the austenite at high temperature. The tunable TIS of Rayleigh wave is realized by combining two bandgap-opened PnCs with different Zak phases. The TRS with adjustable mode width is achieved in the heterostructures by adding PnCs with Dirac point to the middle of two bandgap-opened PnCs with different Zak phases, which exhibits the extraordinary robustness in contrast to the ordinary Fabry-Pérot resonance state. This research provides new possibilities for the highly adjustable Rayleigh wave manipulation and find promising applications such as tunable energy harvesters, wide-mode filters, and high-sensitivity Rayleigh wave detectors.
Keywords:  tunable topological interface state      Rayleigh wave      alterable mode width      topological phononic crystals      shape memory alloys  
Received:  10 May 2022      Revised:  10 July 2022      Accepted manuscript online:  05 August 2022
PACS:  43.55.+p (Architectural acoustics)  
  43.90.+v (Other topics in acoustics)  
  02.40.Pc (General topology)  
  46.40.-f (Vibrations and mechanical waves)  
Fund: Project supported from the Doctoral Research Fund of University of South China (Grant No. 210XQD016) and the Outstanding Youth Foundation of the Hunan Education Department (Grant No. 21B0406).
Corresponding Authors:  Chun-Ming Fu, Shih-Chia Chiu     E-mail:  fuchunming@hnu.edu.cn;gary.sc.qiu@tiinlab.com

Cite this article: 

Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健) Tunable topological interface states and resonance states of surface waves based on the shape memory alloy 2023 Chin. Phys. B 32 034303

[1] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[2] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[3] Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D and Zhang B L 2015 Phys. Rev. Lett. 114 114301
[4] Li F, Huang X Q, Lu J Y, Ma J H and Liu Z Y 2018 Nat. Phys. 14 30
[5] Li R J, Lv B, Tao H B, Shi J H, Chong Y D, Zhang B L and Chen H S 2021 Natl. Sci. Rev. 8 nwaa192
[6] Li Y, Liu Y N and Zhang X 2020 Chin. Phys. B 29 106301
[7] Yan M, Lu J Y, Li F, Deng W Y, Huang X Q, Ma J H and Liu Z Y 2018 Nat. Mater. 17 993
[8] Chen Z G and Wu Y 2016 Phys. Rev. Appl. 5 054021
[9] Ding Y G, Peng Y G, Zhu Y F, Fan X, Yang J, Liang B, Zhu X, Wan X and Cheng J C 2019 Phys. Rev. Lett. 122 014302
[10] Geng Z G, Peng Y G, Shen Y X, Zhao D G and Zhu X F 2018 Appl. Phys. Lett. 113 00350
[11] Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Yu D J, Zheng S J and Liu J 2017 Phys. Rev. B 96 094106
[12] Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P and Chen Y F 2018 Nat. Commun. 9 1
[13] Wang W, Bonello B, Djafari-Rouhani B and Pennec Y 2019 Phys. Rev. B 100 140101
[14] Mao H Y, Chen F J, Guo K and Guo Z Y 2021 Chin. Phys. B 30 084302
[15] Pei D L, Yang T, Chen M and Jiang H 2019 Chin. Phys. B 28 124301
[16] Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[17] Zhang Z W, Tian Y, Wang Y H, Gao S X, Cheng Y, Liu X J and Christensen J 2018 Adv. Mater. 180 1803229
[18] Huang H B, Tan Z H, Huo S Y, Feng L Y, Chen J J and Han X 2020 Commun. Phys. 3 46
[19] Zheng S J, Duan G J and Xia B Z 2020 Int. J. Mech. Sci. 174 105463
[20] Aref T, Delsing P, Ekström M K, Kockum A F, Gustafsson M V, Johansson G, Leek P J, Magnusson E and Manenti R 2016 Quantum Acoustics with Surface Acoustic Waves (Cham: Springer) pp. 217-244
[21] Zeng Y, Zhang S Y, Zhou H T, Wang Y F, Cao L Y, Zhu Y F, Du Q J and Wang Y S 2021 Mater. Des. 208 109906
[22] Chen Y, Liu H, Reilly M, Bae H and Yu M 2014 Nat. Commun. 5 5247
[23] Zak J 1986 Phys. Rev. Lett. 62 2747
[24] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[25] Xiao, M, Ma, G C, Yang, Z Y, Sheng, P, Zhang Z Q and Chan C T 2015 Nat. Phys. 11 240
[26] Meng Y, Wu X X, Zhang R Y, Li X, Hu P, Ge L X, Huang Y Z, Xiang H, Han D Z, Wang S X and Wen W J 2018 New J. Phys. 20 073032
[27] Fan L, Yu W W, Zhang S Y, Zhang H and Ding J 2016 Phys. Rev. B 94 174307
[28] Huang H B, Chen J J and Huo S Y 2017 J. Phys D: Appl. Phys. 50 275102
[29] Jin Y B, Wang W and Djafari-Rouhani B 2020 Int. J. Mech. Sci. 186 105897
[30] Wang W, Jin Y B, Wang W, Bonello B, Djafari-Rouhani B and Fleury R 2020 Phys. Rev. B 101 024101
[31] Zhou W J, Wu B, Chen Z Y, Chen W Q, Lim C W and Reddy J 2020 J. Mech. Phys. Solids 137 103824
[32] Zhou W J, Chen W Q, Destrade M and Lim C W 2020 Int. J. Mech. Sci. 180 105668
[33] Zhou W J, Muhammad, Chen W J, Chen Z Y and Lim C W 2019 Eur. J. Mech.- ASolids 77 103807
[34] Chen Y J, Wu B, Li J, Rudykh S and Chen W Q 2021 Int. J. Mech. Sci. 191 106098
[35] Wang H F, Liu D Y, Fang W B, Lin S Q, Liu Y J and Liang Y J 2020 Int. J. Mech. Sci. 176 105549
[36] Feng L Y, Huang K, Chen J J, Luo J C, Huang H B and Huo S Y 2019 AIP Adv. 9 115201
[37] Luo X H, Ren W J, Jin W and Zhang Z D 2009 Chin. Phys. B 26 036501
[38] Liu Z H, Yi B, Li B T and Ma X Q 2021 Acta Phys. Sin. 61 108104 (in Chinese)
[39] Tan C L, Tian X H and Cai W 2012 Chin. Phys. B 21 057105
[40] Li P P, Wang J M and Jiang C B 2011 Chin. Phys. B 20 028104
[41] Song R N, L X, Zhu W, Liu E K, Li G J, Cai J F, Wang W H and Wu G H 2012 Acta Phys. Sin. 61 027501 (in Chinese)
[42] Shen H H, Yu H J, Fu H, Guo Y J, Fu Y Q and Zu X T 2011 Chin. Phys. B 20 046102
[43] Chuang K C, Lv X F and Wang Y H 2019 J. Appl. Phys. 125 055105
[44] Lv X F, Xu S F, Huang Z L and Chuang K C 2020 Phys. Lett. A 384 126056
[45] Song YH and Shen Y F 2021 Appl. Phys. Lett. 118 224104
[46] Ruzzene M and Baz A 2000 J. Vib. Acoust. 122 151
[47] Liu S T and Mao Z X 2021 Chin. J. Comput. Mech. 38 549
[48] Brinson L C 1993 J. Intell. Mater. Syst. Struct. 4 229
[49] Xu M B and Song G 2004 J. Sound Vib. 278 307
[50] Zhou W J and Fan Z 2021 Smart Mater. Struct. 30 084001
[51] Zhang Z D, Yu S Y, Ge H, Wang J Q, Wang H F, Liu K F, Wu T, He C, Lu M H and Chen Y F 2021 Phys. Rev. Appl. 16 044008
[52] Wang M D, Wang, Zhou W Y, Bi L Y, Qiu C Y, Ke M Z and Liu Z Y 2020 Nat. Commun. 11 3000
[53] Chen Q L, Zhang L, Chen F J, Yan Q H, Xi R, Chen H S and Yang Y H 2021 ACS Photon. 8 1400
[54] Wang J Q, Zhang Z D, Yu S Y, Ge H, Liu K F, Wu T, Sun X C, Liu L, Chen H Y, He C, Lu M H and Chen Y F 2022 Nat. Commun. 13 1324
[55] Shao L B, Maity S, Zheng L, Wu L, Shams-Ansari A, Sohn Y, Puma E, Gadalla M N, Zhang M, Wang C, Hu E, Lai K J and Loncar M 2019 Phys. Rev. Appl. 12 014022
[1] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[2] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[3] Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature
Xiao-Hua Luo(罗小华), Wei-Jun Ren(任卫军), Wei Jin(金伟), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2017, 26(3): 036501.
[4] Magnetic and mechanical properties of Ni–Mn–Ga/Fe–Ga ferromagnetic shape memory composite
Tan Chang-Long (谭昌龙), Zhang Kun (张琨), Tian Xiao-Hua (田晓华), Cai Wei (蔡伟). Chin. Phys. B, 2015, 24(5): 057502.
[5] Pressure effects on magnetic properties and martensitic transformation of Ni–Mn–Sn magnetic shape memory alloys
Zhang Ya-Zhuo (张雅卓), Cao Jia-Mu (曹伽牧), Tan Chang-Long (谭昌龙), Cao Yi-Jiang (曹一江), Cai Wei (蔡伟). Chin. Phys. B, 2014, 23(3): 037504.
[6] The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys:A first-principles study
Tan Chang-Long(谭昌龙), Tian Xiao-Hua (田晓华), and Cai Wei(蔡伟) . Chin. Phys. B, 2012, 21(5): 057105.
[7] Microstructural, phase transformation and magnetic properties of Ni–Mn–Ga alloy fabricated by spark plasma sintering
Tian Xiao-Hua(田晓华), Sui Jie-He(隋解和), Zhang Xin(张欣), Feng Xue(冯雪), and Cai Wei(蔡伟) . Chin. Phys. B, 2011, 20(4): 047503.
[8] The effect of Si content on the martensitic transfor-mation temperature of Ni55.5e18Ga26.5–xSix alloys
Shen Hua-Hai(申华海), Yu Hua-Jun(余华军), Fu Hao(付浩), Guo Yuan-Jun(郭袁俊), Fu Yong-Qing(傅永庆), and Zu Xiao-Tao(祖小涛) . Chin. Phys. B, 2011, 20(4): 046102.
[9] Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys
Li Pan-Pan(李盼盼), Wang Jing-Min(王敬民), and Jiang Cheng-Bao(蒋成保) . Chin. Phys. B, 2011, 20(2): 028104.
[10] Effect of Co on magnetic property and phase stability of Ni–Mn–Ga ferromagnetic shape memory alloys: A first-principles study
Tan Chang-Long(谭昌龙), Jiang Jiu-Xing(姜久兴), Tian Xiao-Hua(田晓华), and Cai Wei(蔡伟). Chin. Phys. B, 2010, 19(10): 107102.
[11] Successive phase transformation in ferromagnetic shape memory alloys Co37Ni34Al39 melt-spun ribbons
Meng Fan-Bin(孟凡斌), Guo Hong-Jun(郭红俊), Liu Guo-Dong(刘国栋), Liu He-Yan(刘何燕), Dai Xue-Fang(代学芳), Luo Hong-Zhi(罗鸿志), Li Yang-Xian(李养贤), Chen Jing-Lan(陈京兰), and Wu Guang-Heng(吴光恒). Chin. Phys. B, 2009, 18(7): 3031-3034.
[12] The acoustoelastic effect on Rayleigh waves in elastic--plastic deformed layered rocks
Liu Jin-Xia(刘金霞), Cui Zhi-Wen(崔志文), and Wang Ke-Xie(王克协). Chin. Phys. B, 2007, 16(8): 2180-2187.
No Suggested Reading articles found!