ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Single-mode lasing in a coupled twin circular-side-octagon microcavity |
Ke Yang(杨珂)1,2, Yue-De Yang(杨跃德)1,2, Jin-Long Xiao(肖金龙)1,2,†, and Yong-Zhen Huang(黄永箴)1,2 |
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We demonstrate the curvature of coupled twin circular-side-octagon microcavity (TCOM) lasers as the degree of freedom to realize manipulation of mode quality ($Q$) factor and lasing characteristics. Numerical simulation results indicate that mode $Q$ factors varying from 10$^{4 }$ to 10$^{8}$, wavelength intervals of different transverse modes, and mode numbers for four-bounce modes can be manipulated for five different deformations. Global mode distributes throughout coupled microcavity with mode $Q$ factor around the order of 10$^{4 }$ or 10$^{5}$. Four-bounce modes lase with injection currents applied single microcavity. By pumping both microcavities simultaneously, single-mode lasing for global modes with side mode suppression ratios (SMSRs) of 30, 32, 32, 31, and 36 dB is achieved at the deformation of 0, 0.5, 1, 1.5, and 2 with four-bounce modes suppressed, respectively. Moreover, the linewidths less than 11 MHz for the single mode are obtained with the deformation of 2. The results show that the lasing modes can be efficiently manipulated considering variable curvature for TCOM lasers, which can promote practical applications of microcavity lasers.
|
Received: 05 March 2022
Revised: 14 April 2022
Accepted manuscript online: 19 April 2022
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.55.Sa
|
(Microcavity and microdisk lasers)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the Strategic Priority Research Program, Chinese Academy of Sciences (Grant No. XDB43000000), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJSSW-JSC002), and the National Natural Science Foundation of China (Grant Nos. 61874113, 61875188, and 61935018). |
Corresponding Authors:
Jin-Long Xiao
E-mail: jlxiao@semi.ac.cn
|
Cite this article:
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴) Single-mode lasing in a coupled twin circular-side-octagon microcavity 2022 Chin. Phys. B 31 094205
|
[1] Vahala K J 2003 Nature 424 839 [2] Murugan G S, Wilkinson J S and Zervas M N 2010 Opt. Lett. 35 1893 [3] Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H and Lv S Q 2015 Chin. Phys. B 24 044208 [4] Zhang P J, Ji Q X, Cao Q T, Wang H M, Liu W J, Gong Q H and Xiao Y F 2021 Proc. Natl. Acad. Sci. USA 118 e2101605118 [5] Midya B, Zhao H, Qiao X D, Miao P, Walasik W, Zhang Z F, Litchinitser N M and Feng L 2019 Photon. Res. 7 363 [6] Chen S, Wang X D, Zhuo M P, Wei G Q, Wu J J and Liao L S 2021 Adv. Opt. Mater. 10 2101931 [7] Yang Y D, Weng H Z, Hao Y Z, Xiao J L and Huang Y Z 2018 Chin. Phys. B 27 114212 [8] Lin J T, Xu Y X, Song J X, Zeng B, He F, Xu H L, Sugioka K, Fang W and Cheng Y 2013 Opt. Lett. 38 1458 [9] Fan H B, Hua S Y, Jiang X S and Xiao M 2013 Laser Phys. Lett. 10 105809 [10] Xiao Y F, Dong C H, Zou C L, Han Z E, Yang L and Guo G C 2009 Opt. Lett. 34 509 [11] Zhao J Y, Zhang W D, Wen T, Ye L L, Lin H, Tang J L, Gong Q H and Lyu G W 2021 Chin. Phys. B 30 114215 [12] Wang G Z, Jiang X S, Zhao M X, Ma Y G, Fan H B, Yang Q, Tong L M and Xiao M 2012 Opt. Express 20 29472 [13] Shang J M, Feng J, Yang C A, Xie S W, Zhang Y, Tong C Z, Zhang Y and Niu Z C 2019 Chin. Phys. B 28 034202 [14] Xiao Y M, Liu J H, Wu Q, Yu Y F and Zhang Z M 2020 Chin. Phys. B 29 074204 [15] Mehrabani S and Armani A M 2013 Opt. Lett. 38 4346 [16] Maker A J and Armani A M 2013 Opt. Express 21 27238 [17] Liu J C, Wu C, Xia G Y, Zheng Q L, Zhu Z H and Xu P 2022 Chin. Phys. B 31 014201 [18] Zhang C, Zou C L, Yan Y L, Wei C, Cui J M, Sun F W, Yao J N and Zhao Y S 2013 Adv. Opt. Mater. 1 357 [19] Baba T and Sano D 2003 IEEE J. Sel. Top. Quantum Electron. 9 1340 [20] Ta V D, Chen R, Ma L, Ying Y J and Sun H D 2013 Laser Photon. Rev. 7 133 [21] Chern G, Tureci H E, Stone A D, Chang R, Kneissl M and Johnson N M 2003 Appl. Phys. Lett. 83 1710 [22] Wiersig J and Hentschel M 2008 Phys. Rev. Lett. 100 033901 [23] Shinohara S, Hentschel M, Wiersig J, Sasaki T and Harayama T 2009 Phys. Rev. A 80 031801 [24] Chang H C, Kioseoglou G, Lee E H, Haetty J, Na M H, Xuan Y, Luo H, Petrou A and Cartwright A N 2000 Phys. Rev. A 62 013816 [25] Boriskina S V, Benson T M, Sewell P and Nosich A I 2005 IEEE J. Quantum Electron. 41 857 [26] Wiersig J 2003 Phys. Rev. A 67 023807 [27] Ma N, Li C and Poon A W 2004 IEEE Photon. Technol. Lett. 16 2487 [28] Bittner S, Loirette-Pelous A, Lafargue C, Gozhyk I, Ulysse C, Dietz B, Zyss J and Lebental M 2018 Phys. Rev. A 97 043826 [29] Dong H X, Chen Z H, Sun L X, Lu J, Xie W, Tan H H, Jagadish C and Shen X C 2009 Appl. Phys. Lett. 94 173115 [30] Li C, Zhou L J, Zheng S M and Poon A W 2006 IEEE J. Sel. Top. Quantum Electron. 12 1438 [31] Tang M, Yang Y D, Weng H Z, Xiao J L and Huang Y Z 2019 Phys. Rev. A 99 033814 [32] Weng H Z, Yang Y D, Xiao J L, Hao Y Z and Huang Y Z 2018 Opt. Express 26 9409 [33] Kudo H, Ogawa Y, Kato T, Yokoo A and Tanabe T 2013 Appl. Phys. Lett. 102 211105 [34] Kudo H, Suzuki R and Tanabe T 2013 Phys. Rev. A 88 023807 [35] Xiao Z X, Huang Y Z, Yang Y D, Xiao J L and Ma X W 2017 Opt. Lett. 42 1309 [36] Zhao T, Shen Z R, Xie W L, Guo Y Q, Wang A B and Wang Y C 2021 Chin. Phys. B 30 120513 [37] Kato T, Suzuki R and Tanabe T 2013 Proceedings of the 10th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), June 30-July 04, 2013, Kyoto, Japan [38] Suzuki R, Kato T, Tetsumoto T and Tanabe T 2015 AIP Advances 5 057127 [39] Zhang Z N, Hao Y Z, Yang K, Ma C G, Xiao J L, Yang Y D and Huang Y Z 2021 Opt. Express 29 39685 [40] Yang K, Yang Y D, Hao Y Z, Wu J L, Huang Y T, Liu J C, Xiao J L and Huang Y Z 2022 Sci. China Inf. Sci. 65 122403 [41] Ludvigsen H, Tossavainen M and Kaivola M 1998 Opt. Commun. 155 180 [42] Richter L E, Mandelberg H I, Kruger M S and McGrath P A 1986 IEEE J. Quantum Electron. 22 2070 [43] Huang S H, Zhu T, Cao Z Z, Liu M, Deng M, Liu J G and Li X 2016 IEEE Photon. Technol. Lett. 28 759 [44] Bennetts S, McDonald G D, Hardman K S, Debs J E, Kuhn C C N, Close J D and Robins N P 2014 Opt. Express 22 10642 [45] Weng H Z, Huang Y Z, Ma X W, Wang F L, Liao M L, Yang Y D and Xiao J L 2017 IEEE Photon. Technol. Lett. 29 1931 [46] Long H, Huang Y Z, Ma X W, Yang Y D, Xiao J L, Zou L X and Liu B W 2015 Opt. Lett. 40 3548 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|