|
|
New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility |
Xin-Rong Hu(胡新荣)1,2, Long-Xiang Liu(刘龙祥)3,†, Wei Jiang(蒋伟)4,5, Jie Ren(任杰)6, Gong-Tao Fan(范功涛)2,3,1,‡, Hong-Wei Wang(王宏伟)2,3,1,§, Xi-Guang Cao(曹喜光)3,1, Long-Long Song(宋龙龙)3, Ying-Du Liu(刘应都)7, Yue Zhang(张岳)4,5, Xin-Xiang Li(李鑫祥)1,2, Zi-Rui Hao(郝子锐)1,2, Pan Kuang(匡攀)1,2, Xiao-He Wang(王小鹤)1, Ji-Feng Hu(胡继峰)1, Bing Jiang(姜炳)1,2, De-Xin Wang(王德鑫)8, Suyalatu Zhang(张苏雅拉吐)8, Zhen-Dong An(安振东)9, Yu-Ting Wang(王玉廷)10, Chun-Wang Ma(马春旺)10, Jian-Jun He(何建军)11, Jun Su(苏俊)11, Li-Yong Zhang(张立勇)11, Yu-Xuan Yang(杨宇萱)1,12, Sheng Jin(金晟)1,2, and Kai-Jie Chen(陈开杰)1,13 |
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; 4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 5 Spallation Neutron Source Science Center, Dongguan 523803, China; 6 Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413, China; 7 Xiangtan University, Xiangtan 411105, China; 8 Institute of Nuclear Physics, Inner Mongolia University for the Nationalities, Tongliao 028000, China; 9 Sun Yat-sen University, Zhuhai 510275, China 10 Henan Normal University, Xinxiang 453007, China 11 Beijing Normal University, Beijing 100875, China 12 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China 13 ShanghaiTech University, Shanghai 200120, China |
|
|
Abstract The 74Se is one of 35 p-nuclei, and 82Se is a r-process only nucleus, and their (n, γ) cross sections are vital input parameters for nuclear astrophysics reaction network calculations. The neutron capture cross section in the resonance range of isotopes and even natural selenium samples has not been measured. Prompt γ-rays originating from neutron-induced capture events were detected by four C6D6 liquid scintillator detectors at the Back-n facility of China Spallation Neutron Source (CSNS). The pulse height weighting technique (PHWT) was used to analyze the data in the 1 eV to 100 keV region. The deduced neutron capture cross section was compared with ENDF/B-VIII.0, JEFF-3.2, and JENDL-4.0, and some differences were found. Resonance parameters were extracted by the R-matrix code SAMMY in the 1 eV-1 keV region. All the cross sections of natSe and resonance parameters are given in the datasets. The datasets are openly available at http://www.doi.org/10.11922/sciencedb.j00113.00019.
|
Received: 07 March 2022
Revised: 28 April 2022
Accepted manuscript online: 12 May 2022
|
PACS:
|
01.52.+r
|
(National and international laboratory facilities)
|
|
24.30.-v
|
(Resonance reactions)
|
|
29.25.Dz
|
(Neutron sources)
|
|
52.70.La
|
(X-ray and γ-ray measurements)
|
|
Fund: The authors sincerely appreciate the efforts of the staff of the CSNS and Back-n collaboration as well as Prof. GuiLin Zhang for his useful suggestion on data analysis. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875311, 11905274, 11705156, 11605097, and U2032146) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34030000). |
Corresponding Authors:
Long-Xiang Liu, Gong-Tao Fan, Hong-Wei Wang
E-mail: liulongxiang@zjlab.org.cn;fangongtao@zjlab.org.cn;wanghongwei@zjlab.org.cn
|
Cite this article:
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰) New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility 2022 Chin. Phys. B 31 080101
|
[1] Kappeler F 1999 Prog. Part. Nucl. Phys. 43 419 [2] Kappeler F, Gallino R, Bisterzo S and Wako Aoki 2011 Rev. Mod. Phys. 83 157 [3] Qian Y Z 2003 Prog. Part. Nucl. Phys. 50 153 [4] Kappeler F 2011 Prog. Part. Nucl. Phys. 66 390 [5] Rauscher T, Dauphas N, Dillmann I, et al. 2013 Rep. Prog. Phys. 76 066201 [6] Reifarth R, Lederer C and Kappeler F 2014 J. Phys. G:Nucl. Part. Phys. 41 053101 [7] Larsen A C, Spyrou A, Liddick S N, et al. 2019 Prog. Part. Nucl. Phys. 107 69 [8] Utsunomiya H, Hara K Y, Goko S et al. 2004 Nucl. Phys. A 738 136 [9] Makinaga A, Utsunomiya H, Goriely S, et al. 2009 Phys. Rev. C 79 025801 [10] Hermann Beer, Walter G and Kappeler F 1992 Ap. J. 389 784 [11] Kamada S, Igashira M, Katabuchi T, et al. 2010 J. Nucl. Sci. Techn. 47 634 [12] Babiano-Suarez V, et al. 2020 J. Phys.:Conf. Ser. 1668 012001 [13] Chen H S and Wang X L 2016 Nat. Mater. 15 689 [14] An Q, Bai H Y, Bao J, et al. 2017 J. Instrum. 12, P07022 [15] Jing H T, Tang J Y, Tang H Q, et al. 2010 Nucl. Instrum. Methods A 621 91 [16] Tang J Y, Bai J B, et al. 2021 Nucl. Sci. Tech. 32 11 [17] Tang J Y and the CSNS Back-n Collaboration 2019 Proceeding of ND2019, EPJ Web of Conferences 239 06002 [18] Li X X, Liu L X, Jiang W, et al. 2020 Nucl. Tech. 43 80501 (in Chinese) [19] Li X X, Liu L X, Jiang W, et al. 2022 Chin. Phys. B 3 038204 [20] Ren J, Ruan X C, Bao J, et al. 2019 Radiat. Detect. Technol. Methods 3 52 [21] Wang Q, Cao P, Qi X, et al. 2018 Rev. Sci. Instrum. 89 013511 [22] Li Q, Luan G Y, Bao J, et al. 2019 Nucl. Instrum. Methods A 946 162479 [23] Macklin R L, Halperin J and Winters R R 1979 Nucl. Instrum. & Methods 164 213 [24] Reifarth R, Erbacher P, Fiebiger S, et al. 2018 Eur. Phys. J. P 133 424 [25] Moxon M C and Rae E R 1963 Nucl. Instr. and Meth. 24 445 [26] Macklin R L and Gibbons J H 1967 Phys. Rev. 159 1007 [27] Borella A, Aerts G, Gunsing F, et al. 2007 Nucl. Instr. Method A 577 626 [28] Hu X R, Fan G T, Jiang W, et al. 2021 Nucl. Sci. Tech. 32 101 [29] Li X X, Liu L X, Jiang W, et al. 2021 Phys. Rev. C 104 054302 [30] Fraval K, Gunsing F, Altstadt S, et al. 2014 Phys. Rev. C 89 044609 [31] Lerendegui M J, Guerrero C, Mendoza E, et al. 2018 Phys. Rev. C 97 024605 [32] Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 115 [33] Tain J L, Gunsing F, Daniel aniel-Cano, et al. 2002 Journal of Nuclear Science and Technology 39 689 [34] Ren J, Ruan X C,Jiang W, et al. 2021 Nucl. Instrum. Methods A 985 164703 [35] Sirakov I, Kopecky S and Yong P G http://www-nds.iaea.org/exfor/endf.htm [36] Iwamoto N http://www-nds.iaea.org/exfor/endf.htm [37] Koning A J and Rochman D http://www-nds.iaea.org/exfor/endf.htm [38] Larson N M Updated Users' Guide for SAMMY:Multilevel R-matrix Fits to Neutron Data Using Bayes' Equations, Oak Ridge National Laboratory Report No.ORNL/TM-9179/R6 [39] Macklin R L, Gibbons J H and Inada T 1962 Phys. Rev. 129 6 [40] Belanova T S Measurements of the absorption cross section for fast neutrons, Zhur. Eksptl'. i Teoret. Fiz. [41] Lederer C, Massimi C, Berthoumieux E, et al. 2014 Phys. Rev. C 89 025810 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|