Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 124206    DOI: 10.1088/1674-1056/ac657a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of broadband achromatic metasurface device based on phase-change material Ge2Sb2Te5

Shuyuan Lv(吕淑媛), Xinhui Li(李新慧), Wenfeng Luo(罗文峰), and Jie Jia(贾洁)
Xi'an University of Posts&Telecommunications, School of Electronic Engineering, Xi'an 710121, China
Abstract  Based on the phase-change material Ge2Sb2Te5 (GST), achromatic metasurface optical device in the longer-infrared wavelength is designed. With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST, the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5 μm to 13 μm are realized. The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband. The simulation calculation results show that the full-width at half-maximum (FWHM) of the focusing spot reaches the diffraction limit at each wavelength. In addition, the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°. The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces, but also provides new possibilities for the integration of optical imaging, optical coding and other related optical systems.
Keywords:  metasurface      optical device      phase-change material      achromatic  
Received:  10 December 2021      Revised:  06 April 2022      Accepted manuscript online:  08 April 2022
PACS:  42.79.-e (Optical elements, devices, and systems)  
  42.79.Bh (Lenses, prisms and mirrors)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
Fund: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JM466).
Corresponding Authors:  Shuyuan Lv     E-mail:  1159955131@qq.com

Cite this article: 

Shuyuan Lv(吕淑媛), Xinhui Li(李新慧), Wenfeng Luo(罗文峰), and Jie Jia(贾洁) Design of broadband achromatic metasurface device based on phase-change material Ge2Sb2Te5 2022 Chin. Phys. B 31 124206

[1] Chen L, Liu J, Zhang X H and Tang D L 2020 Opt. Lett. 45 5772
[2] Li X S, Chen S Q, Wang D, Shi X T and Fan Z G 2021 Opt. Express 29 17173
[3] Chen L, Hao Y, Zhao L, Wu R H, Liu Y, Wei Z C, Xu N, Li Z T and Liu H Z 2021 Opt. Express 29 9332
[4] Li T T, Wang H, Ling F, Zhong Z Q and Zhang B 2020 Superlatt. Microstruct. 146 106653
[5] Ding F, Chen Y T and Sergey I B 2020 Photon. Res. 8 707
[6] Antonellis N, Thomas R, Kats M A, Vitebskiy I and Kottos T 2019 Phys. Rev. Appl. 11 024046
[7] Guo Z, Xu H, Guo K, Shen F, Zhou H, Zhou Q and Yin Z 2018 Nanomaterials 8 333
[8] Chen S Q, Liu W W, Li Z C, Cheng H and Tian J G 2020 Adv. Mater. 32 1805912
[9] Wang P D, Zeng X H 2020 Chin. Phys. B 29 104211
[10] Lv S Y, Jia J, Luo W F and Li X H 2021 Mater. Res. Express 8 115802
[11] Zhang Y H, Yang B W, Liu Z Y and Fu Y G 2020 Coatings 10 389
[12] Ni X J, Wong Z, Mrejen M, Wang Y and Zhang X 2015 Science 349 1310
[13] Huang L L, Muhlenbernd H, Li X W, Song X, Bai B F, Wang Y T and Zentgraf T 2015 Adv. Mater. 27 6444
[14] Wang L, Sergey K, Tang H Z, Kravchenko L, Neshev D N and Kivshar Y S 2016 Optica 3 1504
[15] Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H and Dong J W 2019 Light. Sci. Appl. 8 67
[16] Wang Y L, Fan Q B and Xu T 2021 Opto-Electronic Adv. 4 20000801
[17] Yin X H, Steinle T, Huang L L, Taubner T, Wuttig M, Zentgraf T and Giessen H 2017 Light. Sci. Appl. 6 e17016
[18] Ndao A, Hsu L, Ha J, Park J H, Chang-Hasnain C and Kanté B 2020 Nat. Commun. 11 3205
[19] Li L, Yuan Q, Chen R, Zou X J, Zang W B, Li T Y, Zheng G G, Wang S M, Wang Z L and Zhu S N 2020 Chin. Opt. Lett. 18 082401
[20] Wang W, Zhao R K, Chang S L, Li J, Shi Y, Liu X M, Sun J H, Kang Q L, Guo K and Guo Z Y 2021 Nanomaterials. 11 1485
[21] Chung H, Kim D, Sawant A, Lee I, Choi E and Lee J 2020 Sci. Rep. 10 8289
[22] Wang S M, Wu P C, Su V C, Lai Y C, Hung Chu C, Chen J W, Lu S H, Chen J, Xu B B, Kuan C H, Li T, Zhu S N and Tsai D P 2017 Nat. Commun. 8 187
[23] Shrestha S, Adam C. O, Lu M, Stein A and Yu N F 2018 Light. Sci. Appl. 7 85
[24] Bai W, Yang P, Huang J, Chen D B, Zhang J J, Zhang Z J, Yang J B and Xu B 2019 Sci. Rep. 9 5368
[25] Li X Y, Li S Q, Wang G X, Lei Y F, Hong Y F, Zhang L X, Zeng C, Wang L R, Sun Q B and Zhang W F 2020 Mod. Phys. Lett. B 34 2050313
[26] Ding X Y, Kang Q L, Guo K and Guo Z Y 2020 Opt. Mater. 109 110284
[27] Aspnes D E 1982 American J. Phys. 50 704
[28] Guo Z, Yang X, Shen F, Zhou Q, Gao J and Guo K 2018 Sci. Rep. 8 12433
[29] Shportko K, Kremers S, Woda M, Lencer D, Robertson J and Wuttig M 2008 Nat. Mater. 7 653
[30] Zhao Y, Wang W, Li X H, Lu H B, Shi Z J, Wang Y M, Hu J Y and Shan G C 2020 ACS Photon. 7 2440
[31] Wang Q, Maddock J, Rogers E T F, Roy T, Craig C, Macdonald K F, Hewak D W and Zheludev N I 2014 Appl. Phys. Lett. 104 121105
[32] Petronijevic E and Sibilia C 2016 Opt. Express 24 30411
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[12] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[15] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
No Suggested Reading articles found!