Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 016201    DOI: 10.1088/1674-1056/24/1/016201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electron-acoustic phonon interaction and mobility in stressed rectangular silicon nanowires

Zhu Lin-Li (朱林利)
Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Abstract  We investigate the effects of pre-stress and surface tension on the electron-acoustic phonon scattering rate and the mobility of rectangular silicon nanowires. With the elastic theory and the interaction Hamiltonian for the deformation potential, which considers both the surface energy and the acoustoelastic effects, the phonon dispersion relation for a stressed nanowire under spatial confinement is derived. The subsequent analysis indicates that both surface tension and pre-stress can dramatically change the electron-acoustic phonon interaction. Under a negative (positive) surface tension and a tensile (compressive) pre-stress, the electron mobility is reduced (enhanced) due to the decrease (increase) of the phonon energy as well as the deformation-potential scattering rate. This study suggests an alternative approach based on the strain engineering to tune the speed and the drive current of low-dimensional electronic devices.
Keywords:  phonon properties      elastic model      electron-acoustic phonon interaction      carrier mobility  
Received:  16 April 2014      Revised:  26 August 2014      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  63.20.kd (Phonon-electron interactions)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472243, 11302189, and 11321202), the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175), the Zhejiang Provincial Qianjiang Talent Program, China (Grant No. QJD1202012), and the Educational Commission of Zhejiang Province, China (Grant No. Y201223476).
Corresponding Authors:  Zhu Lin-Li     E-mail:  llzhu@zju.edu.cn

Cite this article: 

Zhu Lin-Li (朱林利) Electron-acoustic phonon interaction and mobility in stressed rectangular silicon nanowires 2015 Chin. Phys. B 24 016201

[1] Xu S, Qin Y, Xu C, Wei Y G, Yang R S and Wang Z L 2010 Nat. Nanotech. 5 366
[2] Qin Z H 2013 Chin. Phys. B 22 098108
[3] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P and Caillat T 2003 Int. Mater. Rev. 48 45
[4] Balandin A A, Pokatilov E P and Nika D L 2007 J. Nanoelectron. Optoelectron. 2 140
[5] Lu P X, Qu L B and Cheng Q H 2013 Chin. Phys. B 22 117101
[6] Wang J, Li C M, Ao J, Li F and Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese)
[7] Balandin A A 2005 J. Nanosci. Nanotechnol. 5 1015
[8] Lanzillotti-Kimur N D, Faintstein A, Lemaitre A and Jusserand B 2006 Appl. Phys. Lett. 88 083113
[9] Grosse F and Zimmermann R 2007 Phys. Rev. B 75 235320
[10] Nika D L, Pokatilov E P and Balandin A A 2008 Appl. Phys. Lett. 93 173111
[11] Fujisawa T, Oosterkamp T H, van der Wiel W G, Broer B W, Aguado R, Tarucha S and Kouwenhoven L P 1998 Science 282 932
[12] Wang H, Pei Y Z, LaLonde A D and Snyder G J 2012 Proc. Natl. Acad. Sci. 109 9705
[13] Neophytou N, Zianni X, Kosina H, Frbboni S, Lorenzi B and Narducci D 2013 Nanotechnology 24 205402
[14] Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
[15] Lanzillotti-Kimur N D, Faintstein A, Balseiro C A and Jusserand B 2007 Phys. Rev. B 75 024301
[16] Lu X, Chu J H and Shen W Z 2003 J. Appl. Phys. 93 1219
[17] Khitun A, Balandin A and Wang K L 1999 Superlattices Microstruct. 26 181
[18] Balasubramanian G, Banerjee S and Puri I K 2008 J. Appl. Phys. 104 064306
[19] Murad S and Puri I K 2009 Appl. Phys. Lett. 95 051907
[20] Wedler G, Walz J, Hesjedal T, Chilla E and Koch R 1998 Phys. Rev. Lett. 80 2382
[21] Chang C L, Jaob J Y, Hoa W Y and Wang D Y 2007 Vacuum 81 604
[22] Weissmüller J, Viswanath R N, Kramer D, Zimmer P, Würschum R and Gleiter H 2003 Science 300 312
[23] Abramson A R, Tien C L and Majumdar A 2002 J. Heat Transfer 124 963
[24] Picu R C, Borca-Tasciuc T and Pavel M C 2003 J. Appl. Phys. 93 3535
[25] Bhowmick S and Shenoy V B 2006 J. Chem. Phys. 125 164513
[26] Liangruksa M and Puri I K 2011 J. Appl. Phys. 109 113501
[27] Yan X Z, Kuang X Y, Mao A J, Kuang F G, Wang Z H and Sheng X W 2013 Acta Phys. Sin 62 107402 (in Chinese)
[28] Han H 2013 Chin. Phys. B 22 077101
[29] Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C and Zhang F W 2014 Chin. Phys. B 23 026201
[30] Alam M T, Manoharan M P, Haque M A, Muratore C and Voevodin A 2012 J. Micromech. Microeng. 22 045001
[31] Osetrov A V, Frohlich H J, Koch R and Chilla E 2000 Phys. Rev. B 62 13963
[32] Zhu L L and Zheng X J 2009 Europhys. Lett. 88 36003
[33] Bannov N, Aristov V and Mitin V 1995 Phys. Rev. B 51 9930
[34] Zou J, Lange X and Richardson C 2006 J. Appl. Phys 100 104309
[35] Sibert E, Ozanam F, Maroun F, Magnussen O M and Behm R J 2003 Phys. Rev. Lett. 90 056102
[36] Wang Y, Hush N S and Reimers J R 2007 Phys. Rev. B 75 233416
[37] Weissmüller J and Kramer D 2005 Langmuir 21 4592
[38] Weigend F, Evers F and Weissmüller J 2006 Small 2 1497
[39] Dingreville R, Qu J and Cherkaoui M 2005 J. Mech. Phys. Solids 53 1827
[40] Morse R W 1949 Ph.D. thesis (Providence: Brown University)
[41] Pokatilov E P, Nika D L and Balandin A A 2006 Appl. Phys. Lett. 89 112110
[42] Murphy-Armando F and Fahy S 2011 J. Appl. Phys. 109 113703
[43] Bai X P and Ban S L 2008 Chin. Phys. B 17 4606
[44] Niquet Y M, Delerue C and Krzeminski C 2012 Nano Lett. 12 3545
[45] Hearmon R F S 1979 Crystal and Solid State Physics Vol. 11 (Berlin: Springer) pp. 1-286
[46] Smith C 1954 Phys. Rev. 94 42
[47] Milne J S, Favorskiy I, Rowe A C H, Arscott S and Renner Ch 2012 Phys. Rev. Lett. 108 256801
[1] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[2] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[3] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[4] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[5] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[6] First-principles analysis of the structural, electronic, and elastic properties of cubic organic-inorganic perovskite HC(NH2)2PbI3
Jun-Fei Wang(王俊斐), Xiao-Nan Fu(富笑男), Jun-Tao Wang(王俊涛). Chin. Phys. B, 2017, 26(10): 106301.
[7] Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm
Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2016, 25(8): 086502.
[8] First-principles hybrid functional study of the electronic structure and charge carrier mobility in perovskite CH3NH3SnI3
Li-Juan Wu(伍丽娟), Yu-Qing Zhao(赵宇清), Chang-Wen Chen(陈畅文), Ling-Zhi Wang(王琳芝), Biao Liu(刘标), Meng-Qiu Cai(蔡孟秋). Chin. Phys. B, 2016, 25(10): 107202.
[9] Effect of double AlN buffer layer on the qualities of GaN films grown by radio-frequency molecular beam epitaxy
Li Xin-Hua(李新化), Zhong Fei(钟飞), Qiu Kai(邱凯), Yin Zhi-Jun(尹志军), and Ji Chang-Jian(姬长建). Chin. Phys. B, 2008, 17(4): 1360-1363.
No Suggested Reading articles found!