CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Electron-acoustic phonon interaction and mobility in stressed rectangular silicon nanowires |
Zhu Lin-Li (朱林利) |
Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract We investigate the effects of pre-stress and surface tension on the electron-acoustic phonon scattering rate and the mobility of rectangular silicon nanowires. With the elastic theory and the interaction Hamiltonian for the deformation potential, which considers both the surface energy and the acoustoelastic effects, the phonon dispersion relation for a stressed nanowire under spatial confinement is derived. The subsequent analysis indicates that both surface tension and pre-stress can dramatically change the electron-acoustic phonon interaction. Under a negative (positive) surface tension and a tensile (compressive) pre-stress, the electron mobility is reduced (enhanced) due to the decrease (increase) of the phonon energy as well as the deformation-potential scattering rate. This study suggests an alternative approach based on the strain engineering to tune the speed and the drive current of low-dimensional electronic devices.
|
Received: 16 April 2014
Revised: 26 August 2014
Accepted manuscript online:
|
PACS:
|
62.20.D-
|
(Elasticity)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
72.20.Fr
|
(Low-field transport and mobility; piezoresistance)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472243, 11302189, and 11321202), the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175), the Zhejiang Provincial Qianjiang Talent Program, China (Grant No. QJD1202012), and the Educational Commission of Zhejiang Province, China (Grant No. Y201223476). |
Corresponding Authors:
Zhu Lin-Li
E-mail: llzhu@zju.edu.cn
|
Cite this article:
Zhu Lin-Li (朱林利) Electron-acoustic phonon interaction and mobility in stressed rectangular silicon nanowires 2015 Chin. Phys. B 24 016201
|
[1] |
Xu S, Qin Y, Xu C, Wei Y G, Yang R S and Wang Z L 2010 Nat. Nanotech. 5 366
|
[2] |
Qin Z H 2013 Chin. Phys. B 22 098108
|
[3] |
Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P and Caillat T 2003 Int. Mater. Rev. 48 45
|
[4] |
Balandin A A, Pokatilov E P and Nika D L 2007 J. Nanoelectron. Optoelectron. 2 140
|
[5] |
Lu P X, Qu L B and Cheng Q H 2013 Chin. Phys. B 22 117101
|
[6] |
Wang J, Li C M, Ao J, Li F and Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese)
|
[7] |
Balandin A A 2005 J. Nanosci. Nanotechnol. 5 1015
|
[8] |
Lanzillotti-Kimur N D, Faintstein A, Lemaitre A and Jusserand B 2006 Appl. Phys. Lett. 88 083113
|
[9] |
Grosse F and Zimmermann R 2007 Phys. Rev. B 75 235320
|
[10] |
Nika D L, Pokatilov E P and Balandin A A 2008 Appl. Phys. Lett. 93 173111
|
[11] |
Fujisawa T, Oosterkamp T H, van der Wiel W G, Broer B W, Aguado R, Tarucha S and Kouwenhoven L P 1998 Science 282 932
|
[12] |
Wang H, Pei Y Z, LaLonde A D and Snyder G J 2012 Proc. Natl. Acad. Sci. 109 9705
|
[13] |
Neophytou N, Zianni X, Kosina H, Frbboni S, Lorenzi B and Narducci D 2013 Nanotechnology 24 205402
|
[14] |
Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
|
[15] |
Lanzillotti-Kimur N D, Faintstein A, Balseiro C A and Jusserand B 2007 Phys. Rev. B 75 024301
|
[16] |
Lu X, Chu J H and Shen W Z 2003 J. Appl. Phys. 93 1219
|
[17] |
Khitun A, Balandin A and Wang K L 1999 Superlattices Microstruct. 26 181
|
[18] |
Balasubramanian G, Banerjee S and Puri I K 2008 J. Appl. Phys. 104 064306
|
[19] |
Murad S and Puri I K 2009 Appl. Phys. Lett. 95 051907
|
[20] |
Wedler G, Walz J, Hesjedal T, Chilla E and Koch R 1998 Phys. Rev. Lett. 80 2382
|
[21] |
Chang C L, Jaob J Y, Hoa W Y and Wang D Y 2007 Vacuum 81 604
|
[22] |
Weissmüller J, Viswanath R N, Kramer D, Zimmer P, Würschum R and Gleiter H 2003 Science 300 312
|
[23] |
Abramson A R, Tien C L and Majumdar A 2002 J. Heat Transfer 124 963
|
[24] |
Picu R C, Borca-Tasciuc T and Pavel M C 2003 J. Appl. Phys. 93 3535
|
[25] |
Bhowmick S and Shenoy V B 2006 J. Chem. Phys. 125 164513
|
[26] |
Liangruksa M and Puri I K 2011 J. Appl. Phys. 109 113501
|
[27] |
Yan X Z, Kuang X Y, Mao A J, Kuang F G, Wang Z H and Sheng X W 2013 Acta Phys. Sin 62 107402 (in Chinese)
|
[28] |
Han H 2013 Chin. Phys. B 22 077101
|
[29] |
Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C and Zhang F W 2014 Chin. Phys. B 23 026201
|
[30] |
Alam M T, Manoharan M P, Haque M A, Muratore C and Voevodin A 2012 J. Micromech. Microeng. 22 045001
|
[31] |
Osetrov A V, Frohlich H J, Koch R and Chilla E 2000 Phys. Rev. B 62 13963
|
[32] |
Zhu L L and Zheng X J 2009 Europhys. Lett. 88 36003
|
[33] |
Bannov N, Aristov V and Mitin V 1995 Phys. Rev. B 51 9930
|
[34] |
Zou J, Lange X and Richardson C 2006 J. Appl. Phys 100 104309
|
[35] |
Sibert E, Ozanam F, Maroun F, Magnussen O M and Behm R J 2003 Phys. Rev. Lett. 90 056102
|
[36] |
Wang Y, Hush N S and Reimers J R 2007 Phys. Rev. B 75 233416
|
[37] |
Weissmüller J and Kramer D 2005 Langmuir 21 4592
|
[38] |
Weigend F, Evers F and Weissmüller J 2006 Small 2 1497
|
[39] |
Dingreville R, Qu J and Cherkaoui M 2005 J. Mech. Phys. Solids 53 1827
|
[40] |
Morse R W 1949 Ph.D. thesis (Providence: Brown University)
|
[41] |
Pokatilov E P, Nika D L and Balandin A A 2006 Appl. Phys. Lett. 89 112110
|
[42] |
Murphy-Armando F and Fahy S 2011 J. Appl. Phys. 109 113703
|
[43] |
Bai X P and Ban S L 2008 Chin. Phys. B 17 4606
|
[44] |
Niquet Y M, Delerue C and Krzeminski C 2012 Nano Lett. 12 3545
|
[45] |
Hearmon R F S 1979 Crystal and Solid State Physics Vol. 11 (Berlin: Springer) pp. 1-286
|
[46] |
Smith C 1954 Phys. Rev. 94 42
|
[47] |
Milne J S, Favorskiy I, Rowe A C H, Arscott S and Renner Ch 2012 Phys. Rev. Lett. 108 256801
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|