Special Issue:
TOPICAL REVIEW — Low-dimensional complex oxide structures
|
TOPICAL REVIEW—Low-dimensional complex oxide structures |
Prev
Next
|
|
|
Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides |
Qing-Hua Zhang(张庆华)1, Dong-Dong Xiao(肖东东)2, Lin Gu(谷林)2,3 |
1 School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China |
|
|
Abstract Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-Tc SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides.
|
Received: 22 March 2016
Revised: 12 April 2016
Accepted manuscript online:
|
PACS:
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
77.55.-g
|
(Dielectric thin films)
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
Fund: Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002). |
Corresponding Authors:
Lin Gu
E-mail: l.gu@iphy.ac.cn
|
Cite this article:
Qing-Hua Zhang(张庆华), Dong-Dong Xiao(肖东东), Lin Gu(谷林) Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides 2016 Chin. Phys. B 25 066803
|
[1] |
Erni R, Rossell M D, Kisielowski C and Dahmen U 2009 Phys. Rev. Lett. 102 096101
|
[2] |
Van Tendeloo G, Bals S, Van Aert S, Verbeeck J and Van Dyck D 2012 Adv. Mater. 24 5655
|
[3] |
Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F and Abe E 2011 Nat. Mater. 10 278
|
[4] |
MacLaren I and Ramasse Q M 2014 Int. Mater. Rev. 59 115
|
[5] |
Okunishi E, Ishikawa I, Sawada H, Hosokawa F, Hori M and Kondo Y 2009 Microsc. Microanal. 15 164
|
[6] |
Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Yamamoto T and Ikuhara Y 2009 Appl. Phys. Lett. 95 191913
|
[7] |
Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y and Ikuhara Y 2010 Ultramicroscopy 110 903
|
[8] |
Findlay S D, Azuma S, Shibata N, Okunishi E and Ikuhara Y 2011 Ultramicroscopy 111 285
|
[9] |
Findlay S D, Lugg N R, Shibata N, Allen L J and Ikuhara Y 2011 Ultramicroscopy 111 1144
|
[10] |
Findlay S D, Kohno Y, Cardamone L A, Ikuhara Y and Shibata N 2014 Ultramicroscopy 136 31
|
[11] |
Oshima Y, Sawada H, Hosokawa F, Okunishi E, Kaneyama T, Kondo Y, Niitaka S, Takagi H, Tanishiro Y and Takayanagi K 2010 J. Electron Microsc. 59 457
|
[12] |
Saito M, Kimoto K, Nagai T, Fukushima S, Akahoshi D, Kuwahara H, Matsui Y and Ishizuka K 2009 J. Electron Microsc. 58 131
|
[13] |
Kimoto K, Asaka T, Yu X, Nagai T, Matsui Y and Ishizuka K 2010 Ultramicroscopy 110 778
|
[14] |
Houben L, Thust A and Urban K 2006 Ultramicroscopy 106 200
|
[15] |
Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J and Ramesh R 2009 Nat. Mater. 8 229
|
[16] |
Yang S Y, SeidelJ, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W and Ramesh R 2010 Nat. Nano 5 143
|
[17] |
Zhang Q H, Wang L J, Wei X K, Yu R C, Gu L, Hirata A, Chen M W, Jin C Q, Yao Y, Wang Y G and Duan X F 2012 Phys. Rev. B 85 020102
|
[18] |
Zhang Q, Tan G, Gu L, Yao Y, Jin C, Wang Y, Duan X and Yu R 2013 Sci. Rep. 3 2741
|
[19] |
Zhang Q H, Tan G T, Gu L, Yao Y, Jin C Q, Wang Y G, Duan X F and Yu R C 2014 Appl. Phys. Lett. 105 012902
|
[20] |
Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q and Pan X Q 2011 Nano Lett. 11 828
|
[21] |
Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D and Pennycook S J 2015 Science 348 547
|
[22] |
Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepüetz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W and Ramesh R 2016 Nature 530 198
|
[23] |
Batson P E 2011 Nat. Mater. 10 270
|
[24] |
Borisevich A Y, Chang H J, Huijben M, Oxley M P, Okamoto S, Niranjan M K, Burton J D, Tsymbal E Y, Chu Y H, Yu P, Ramesh R, Kalinin S V and Pennycook S J 2010 Phys. Rev. Lett. 105 087204
|
[25] |
Sanchez-Santolino G, Cabero M, Varela M, Garcia-Barriocanal J, Leon C, Pennycook S J and Santamaria J 2014 Microsc. Microanal. 20 825
|
[26] |
He Q, Ishikawa R, Lupini A R, Qiao L, Moon E J, Ovchinnikov O, May S J, Biegalski M D and Borisevich A Y 2015 Acs Nano 9 8412
|
[27] |
Lunkenbein T, Girgsdies F, Wernbacher A, Noack J, Auffermann G, Yasuhara A, Klein-Hoffmann A, Ueda W, Eichelbaum M, Trunschke A, Schloegl R and Willinger M G 2015 Angew. Chem. Int. Ed. 54 6828
|
[28] |
Qiao L, Jang J H, Singh D J, Gai Z, Xiao H, Mehta A, Vasudevan R K, Tselev A, Feng Z, Zhou H, Li S, Prellier W, Zu X, Liu Z, Borisevich A, Baddorf A P and Biegalski M D 2015 Nano Lett. 15 4677
|
[29] |
Aso R, Kan D, Shimakawa Y and Kurata H 2013 Sci. Rep. 3 2214
|
[30] |
Borisevich A, Ovchinnikov O S, Chang H J, Oxley M P, Yu P, Seidel J, Eliseev E A, Morozovska A N, Ramesh R, Pennycook S J and Kalinin S V 2010 Acs Nano 4 6071
|
[31] |
Wang Z, Saito M, McKenna K P, Gu L, Tsukimoto S, Shluger A L and Ikuhara Y 2011 Nature 479 380
|
[32] |
Wang Z L, Yin J S and Jiang Y D 2000 Micron 31 571
|
[33] |
Muller D A, Kourkoutis L F, Murfitt M, Song J H, Hwang H Y, Silcox J, Dellby N and Krivanek O L 2008 Science 319 1073
|
[34] |
Varela M, Oxley M P, Luo W, Tao J, Watanabe M, Lupini A R, Pantelides S T and Pennycook S J 2009 Phys. Rev. B 79 085117
|
[35] |
Tan H, Turner S, Yucelen E, Verbeeck J and Van Tendeloo G 2011 Phys. Rev. Lett. 107 107602.
|
[36] |
Mundy J A, Mao Q, Brooks C M, Schlom D G and Muller D A 2012 Appl. Phys. Lett. 101 042907
|
[37] |
Turner S, Verbeeck J, Ramezanipour F, Greedan J E, Van Tendeloo G and Botton G A 2012 Chem. Mater. 24 1904
|
[38] |
Haruta M, Nagai T, Lugg N R, Neish M J, Nagao M, Kurashima K, Allen L J, Mizoguchi T and Kimoto K 2013 J. Appl. Phys. 114 083712
|
[39] |
Gauquelin N, Benckiser E, Kinyanjui M K, Wu M, Lu Y, Christiani G, Logvenov G, Habermeier H U, Kaiser U, Keimer B and Botton G A 2014 Phys. Rev. B 90 195140
|
[40] |
Gauquelin N, Hawthorn D G, Sawatzky G A, Liang R X, Bonn D A, Hardy W N and Botton G A 2014 Nat. Commun. 5 4275
|
[41] |
Kim Y M, Morozovska A, Eliseev E, Oxley M P, Mishra R, Selbach S M, Grande T, Pantelides S T, Kalinin S V and Borisevich A Y 2014 Nat. Mater. 13 1019
|
[42] |
Mishra R, Kim Y M, Salafranca J, Kim S K, Chang S H, Bhattacharya A, Fong D D, Pennycook S J, Pantelides S T and Borisevich A Y 2014 Nano Lett. 14 2694
|
[43] |
Gibert M, Viret M, Torres-Pardo A, Piamonteze C, Zubko P, Jaouen N, Tonnerre J M, Mougin A, Fowlie J, Catalano S, Gloter A, Stephan O and Triscone J M 2015 Nano Lett. 15 7355
|
[44] |
Marinova M, Rault J E, Gloter A, Nemsak S, Palsson G K, Rueff J P, Fadley C S, Carretero C, Yamada H, March K, Garcia V, Fusil S, Barthelemy A, Stephan O, Colliex C and Bibes M 2015 Nano Lett. 15 2533
|
[45] |
Gulec A, Phelan D, Leighton C and Klie R F 2016 Acs Nano 10 938
|
[46] |
Mundy J A, Hikita Y, Hidaka T, Yajima T, Higuchi T, Hwang H Y, Muller D A and Kourkoutis L F 2014 Nat. Commun. 5 3464
|
[47] |
Klie R F, Zheng J C, Zhu Y, Varela M, Wu J and Leighton C 2007 Phys. Rev. Lett. 99 047203
|
[48] |
Gazquez J, Luo W, Oxley M P, Prange M, Torija M A, Sharma M, Leighton C, Pantelides S T, Pennycook S J and Varela M 2011 Nano Lett. 11 973
|
[49] |
Kwon J H, Choi W S, Kwon Y K, Jung R, Zuo J M, Lee H N and Kim M 2014 Chem. Mater. 26 2496
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|