Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 066803    DOI: 10.1088/1674-1056/25/6/066803
Special Issue: TOPICAL REVIEW — Low-dimensional complex oxide structures
TOPICAL REVIEW—Low-dimensional complex oxide structures Prev   Next  

Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

Qing-Hua Zhang(张庆华)1, Dong-Dong Xiao(肖东东)2, Lin Gu(谷林)2,3
1 School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  

Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-Tc SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides.

Keywords:  aberration-corrected STEM      ferroelectric polarization      octahedral distortion      chemical bonding  
Received:  22 March 2016      Revised:  12 April 2016      Accepted manuscript online: 
PACS:  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  77.55.-g (Dielectric thin films)  
  31.15.ae (Electronic structure and bonding characteristics)  
  75.47.Lx (Magnetic oxides)  
Fund: 

Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

Corresponding Authors:  Lin Gu     E-mail:  l.gu@iphy.ac.cn

Cite this article: 

Qing-Hua Zhang(张庆华), Dong-Dong Xiao(肖东东), Lin Gu(谷林) Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides 2016 Chin. Phys. B 25 066803

[1] Erni R, Rossell M D, Kisielowski C and Dahmen U 2009 Phys. Rev. Lett. 102 096101
[2] Van Tendeloo G, Bals S, Van Aert S, Verbeeck J and Van Dyck D 2012 Adv. Mater. 24 5655
[3] Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F and Abe E 2011 Nat. Mater. 10 278
[4] MacLaren I and Ramasse Q M 2014 Int. Mater. Rev. 59 115
[5] Okunishi E, Ishikawa I, Sawada H, Hosokawa F, Hori M and Kondo Y 2009 Microsc. Microanal. 15 164
[6] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Yamamoto T and Ikuhara Y 2009 Appl. Phys. Lett. 95 191913
[7] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y and Ikuhara Y 2010 Ultramicroscopy 110 903
[8] Findlay S D, Azuma S, Shibata N, Okunishi E and Ikuhara Y 2011 Ultramicroscopy 111 285
[9] Findlay S D, Lugg N R, Shibata N, Allen L J and Ikuhara Y 2011 Ultramicroscopy 111 1144
[10] Findlay S D, Kohno Y, Cardamone L A, Ikuhara Y and Shibata N 2014 Ultramicroscopy 136 31
[11] Oshima Y, Sawada H, Hosokawa F, Okunishi E, Kaneyama T, Kondo Y, Niitaka S, Takagi H, Tanishiro Y and Takayanagi K 2010 J. Electron Microsc. 59 457
[12] Saito M, Kimoto K, Nagai T, Fukushima S, Akahoshi D, Kuwahara H, Matsui Y and Ishizuka K 2009 J. Electron Microsc. 58 131
[13] Kimoto K, Asaka T, Yu X, Nagai T, Matsui Y and Ishizuka K 2010 Ultramicroscopy 110 778
[14] Houben L, Thust A and Urban K 2006 Ultramicroscopy 106 200
[15] Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J and Ramesh R 2009 Nat. Mater. 8 229
[16] Yang S Y, SeidelJ, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W and Ramesh R 2010 Nat. Nano 5 143
[17] Zhang Q H, Wang L J, Wei X K, Yu R C, Gu L, Hirata A, Chen M W, Jin C Q, Yao Y, Wang Y G and Duan X F 2012 Phys. Rev. B 85 020102
[18] Zhang Q, Tan G, Gu L, Yao Y, Jin C, Wang Y, Duan X and Yu R 2013 Sci. Rep. 3 2741
[19] Zhang Q H, Tan G T, Gu L, Yao Y, Jin C Q, Wang Y G, Duan X F and Yu R C 2014 Appl. Phys. Lett. 105 012902
[20] Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q and Pan X Q 2011 Nano Lett. 11 828
[21] Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D and Pennycook S J 2015 Science 348 547
[22] Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepüetz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W and Ramesh R 2016 Nature 530 198
[23] Batson P E 2011 Nat. Mater. 10 270
[24] Borisevich A Y, Chang H J, Huijben M, Oxley M P, Okamoto S, Niranjan M K, Burton J D, Tsymbal E Y, Chu Y H, Yu P, Ramesh R, Kalinin S V and Pennycook S J 2010 Phys. Rev. Lett. 105 087204
[25] Sanchez-Santolino G, Cabero M, Varela M, Garcia-Barriocanal J, Leon C, Pennycook S J and Santamaria J 2014 Microsc. Microanal. 20 825
[26] He Q, Ishikawa R, Lupini A R, Qiao L, Moon E J, Ovchinnikov O, May S J, Biegalski M D and Borisevich A Y 2015 Acs Nano 9 8412
[27] Lunkenbein T, Girgsdies F, Wernbacher A, Noack J, Auffermann G, Yasuhara A, Klein-Hoffmann A, Ueda W, Eichelbaum M, Trunschke A, Schloegl R and Willinger M G 2015 Angew. Chem. Int. Ed. 54 6828
[28] Qiao L, Jang J H, Singh D J, Gai Z, Xiao H, Mehta A, Vasudevan R K, Tselev A, Feng Z, Zhou H, Li S, Prellier W, Zu X, Liu Z, Borisevich A, Baddorf A P and Biegalski M D 2015 Nano Lett. 15 4677
[29] Aso R, Kan D, Shimakawa Y and Kurata H 2013 Sci. Rep. 3 2214
[30] Borisevich A, Ovchinnikov O S, Chang H J, Oxley M P, Yu P, Seidel J, Eliseev E A, Morozovska A N, Ramesh R, Pennycook S J and Kalinin S V 2010 Acs Nano 4 6071
[31] Wang Z, Saito M, McKenna K P, Gu L, Tsukimoto S, Shluger A L and Ikuhara Y 2011 Nature 479 380
[32] Wang Z L, Yin J S and Jiang Y D 2000 Micron 31 571
[33] Muller D A, Kourkoutis L F, Murfitt M, Song J H, Hwang H Y, Silcox J, Dellby N and Krivanek O L 2008 Science 319 1073
[34] Varela M, Oxley M P, Luo W, Tao J, Watanabe M, Lupini A R, Pantelides S T and Pennycook S J 2009 Phys. Rev. B 79 085117
[35] Tan H, Turner S, Yucelen E, Verbeeck J and Van Tendeloo G 2011 Phys. Rev. Lett. 107 107602.
[36] Mundy J A, Mao Q, Brooks C M, Schlom D G and Muller D A 2012 Appl. Phys. Lett. 101 042907
[37] Turner S, Verbeeck J, Ramezanipour F, Greedan J E, Van Tendeloo G and Botton G A 2012 Chem. Mater. 24 1904
[38] Haruta M, Nagai T, Lugg N R, Neish M J, Nagao M, Kurashima K, Allen L J, Mizoguchi T and Kimoto K 2013 J. Appl. Phys. 114 083712
[39] Gauquelin N, Benckiser E, Kinyanjui M K, Wu M, Lu Y, Christiani G, Logvenov G, Habermeier H U, Kaiser U, Keimer B and Botton G A 2014 Phys. Rev. B 90 195140
[40] Gauquelin N, Hawthorn D G, Sawatzky G A, Liang R X, Bonn D A, Hardy W N and Botton G A 2014 Nat. Commun. 5 4275
[41] Kim Y M, Morozovska A, Eliseev E, Oxley M P, Mishra R, Selbach S M, Grande T, Pantelides S T, Kalinin S V and Borisevich A Y 2014 Nat. Mater. 13 1019
[42] Mishra R, Kim Y M, Salafranca J, Kim S K, Chang S H, Bhattacharya A, Fong D D, Pennycook S J, Pantelides S T and Borisevich A Y 2014 Nano Lett. 14 2694
[43] Gibert M, Viret M, Torres-Pardo A, Piamonteze C, Zubko P, Jaouen N, Tonnerre J M, Mougin A, Fowlie J, Catalano S, Gloter A, Stephan O and Triscone J M 2015 Nano Lett. 15 7355
[44] Marinova M, Rault J E, Gloter A, Nemsak S, Palsson G K, Rueff J P, Fadley C S, Carretero C, Yamada H, March K, Garcia V, Fusil S, Barthelemy A, Stephan O, Colliex C and Bibes M 2015 Nano Lett. 15 2533
[45] Gulec A, Phelan D, Leighton C and Klie R F 2016 Acs Nano 10 938
[46] Mundy J A, Hikita Y, Hidaka T, Yajima T, Higuchi T, Hwang H Y, Muller D A and Kourkoutis L F 2014 Nat. Commun. 5 3464
[47] Klie R F, Zheng J C, Zhu Y, Varela M, Wu J and Leighton C 2007 Phys. Rev. Lett. 99 047203
[48] Gazquez J, Luo W, Oxley M P, Prange M, Torija M A, Sharma M, Leighton C, Pantelides S T, Pennycook S J and Varela M 2011 Nano Lett. 11 973
[49] Kwon J H, Choi W S, Kwon Y K, Jung R, Zuo J M, Lee H N and Kim M 2014 Chem. Mater. 26 2496
[1] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method
H Dhaouadi, R Zgueb, O Riahi, F Trabelsi, T Othman. Chin. Phys. B, 2016, 25(5): 057704.
[4] Effects of the ion-beam voltage on the properties of the diamond-like carbon thin film prepared by ion-beam sputtering deposition
Sun Peng (孙鹏), Hu Ming (胡明), Zhang Feng (张锋), Ji Yi-Qin (季一勤), Liu Hua-Song (刘华松), Liu Dan-Dan (刘丹丹), Leng Jian (冷健). Chin. Phys. B, 2015, 24(6): 067803.
[5] First-principles calculation of the electronic structure, chemical bonding, and thermodynamic properties of β-US2
Li Shi-Chang (李世长), Zheng Yuan-Lei (郑远蕾), Ma Sheng-Gui (马生贵), Gao Tao (高涛), Ao Bing-Yun (敖冰云). Chin. Phys. B, 2015, 24(12): 127101.
[6] Ab initio study of the electronic structure and elastic properties of Al5C3N
Xu Xue-Wen(徐学文), Hu Long(胡龙), Yu Xiao(宇霄), Lu Zun-Ming(卢遵铭), Fan Ying(范英), frameLi Yang-Xian(李养贤), and Tang Cheng-Chun(唐成春) . Chin. Phys. B, 2011, 20(12): 126201.
No Suggested Reading articles found!