Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 037902    DOI: 10.1088/1674-1056/20/3/037902
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photoemission of graded-doping GaN photocathode

Fu Xiao-Qian(付小倩)a)b), Chang Ben-Kang(常本康) a)†, Wang Xiao-Hui(王晓晖)a), Li Biao(李飙)a), Du Yu-Jie(杜玉杰)a), and Zhang Jun-Ju(张俊举)a)
a Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China; b School of Information Science and Engineering, University of Jinan, Jinan 250022, China
Abstract  We study the photoemission process of graded-doping GaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, which results in the enhancement of quantum efficiency. The intervalley scattering mechanism and the lattice scattering mechanism in high electric fields are also investigated. To prevent negative differential mobility from appearing, the surface doping concentration needs to be optimized, and it is calculated to be 3.19×1017 cm-3. The graded-doping GaN photocathode with higher performance can be realized by further optimizing the doping profile.
Keywords:  GaN photocathode      graded-doping      photoemission      quantum efficiency  
Received:  01 July 2010      Revised:  11 October 2010      Accepted manuscript online: 
PACS:  79.60.-i (Photoemission and photoelectron spectra)  
  61.72.U- (Doping and impurity implantation)  
  85.60.Ha (Photomultipliers; phototubes and photocathodes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60871012) and the Research Fund of Nanjing University of Science and Technology (Grant No. 2010ZYTS032).

Cite this article: 

Fu Xiao-Qian(付小倩), Chang Ben-Kang(常本康), Wang Xiao-Hui(王晓晖), Li Biao(李飙), Du Yu-Jie(杜玉杰), and Zhang Jun-Ju(张俊举) Photoemission of graded-doping GaN photocathode 2011 Chin. Phys. B 20 037902

[1] Bell R L, James L W and Moon R L 1974 Appl. Phys. Lett. 25 645
[2] Gregory P E, Escher J S, Hyder S B, Houng Y M and Antypas G A 1978 J. Vac. Sci. Technol. 15 1483
[3] Gregory P E, Escher J S, Saxena R R and Hyder S B 1980 Appl. Phys. Lett. 36 639
[4] Niigaki M, Hirohata T, Suzuki T, Kan H and Hiruma T 1997 Appl. Phys. Lett. 71 2493
[5] Yang Z, Chang B K, Zou J J, Qiao J L, Gao P, Zeng Y P and Li H 2007 Appl. Opt. 46 7035
[6] Niu J, Yang Z and Chang B K 2009 Chin. Phys. Lett. 26 104202
[7] Zhang Y J, Chang B K, Yang Z, Niu J and Zou J J 2009 Chin. Phys. B 18 4541
[8] Zou J J, Chang B K and Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese)
[9] Niu J, Yang Z, Chang B K, Qiao J L and Zhang Y J 2009 Acta Phys. Sin. 58 5002 (in Chinese)
[10] Spicer W E 1958 Phys. Rev. 112 114
[11] Zhang Y J, Chang B K, Yang Z, Niu J, Xiong Y J, Shi F, Guo H and Zeng Y P 2009 Appl. Opt. 48 1715
[12] Liu E K, Zhu B S and Luo J S 2003 Semiconducting Physics (Beijing: Publishing House of Electronics Industry) (in Chinese) pp202, 136, 132
[13] Liu Z, Machuca F, Pianetta P, Spicer W E and Pease R F W 2004 Appl. Phys. Lett. 85 1541
[14] Albrecht J D, Ruden P P, Limpijumnong S, Lambrecht W R L and Brennan K F 1999 J. Appl. Phys. 86 6864
[15] Brazis R and Raguotis R 2004 Appl. Phys. Lett. 85 609
[16] Barker J M, Akis R, Thornton T J, Ferry D K and Goodnick S M 2002 Phys. Stat. Sol. (a) 190 263
[17] Brazel E G, Chin M A, Narayanamurti V, Kapolnek D, Tarsa E J and DenBaars S P 1997 Appl. Phys. Lett. 70 330 endfootnotesize
[1] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[2] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[3] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[4] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[5] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[6] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[7] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[8] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[9] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
[10] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[11] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[12] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[13] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[14] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[15] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
No Suggested Reading articles found!