Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 062902    DOI: 10.1088/1674-1056/19/6/062902
NUCLEAR PHYSICS Prev   Next  

Characteristics of terahertz coherent transition radiation generated from picosecond ultrashort electron bunches

Liu Wen-Xin(刘文鑫), Tang Chuan-Xiang(唐传祥), and Huang Wen-Hui(黄文会)
Department of Engineering Physics, Tsinghua University, Beijing 100084, China; Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Tsinghua University, Beijing 100084, China; Key Laboratory of High Energy Radiation Imaging Fundamental Science for National Defense, Tsinghua University, Beijing 100084, China
Abstract  This paper presents a method of generating terahertz (THz) coherent transition radiation (CTR) from picosecond ultrashort electron bunches including single and train bunches, which are produced by a photocathode radio frequency gun. The radiation characteristics of THz CTR including formation factor and energy spectrum are analysed in detail. With the help of a 2-dimensional particle-in-cell simulation, the radiation characteristics including power, energy and magnetic field are analysed. The results show that the radiation frequency can be adjusted by tuning the repetition frequency of the train bunch and the energy can be enhanced with the train bunches.
Keywords:  coherent transition radiation      photocathode radio-frequency gun      ultrashort electron bunches      particle-in-cell  
Received:  15 July 2009      Accepted manuscript online: 
PACS:  29.27.Eg (Beam handling; beam transport)  
  85.60.Ha (Photomultipliers; phototubes and photocathodes)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  41.75.Fr (Electron and positron beams)  
Fund: Project supported by the Key Program of National Natural Science Foundation of China (Grant No.~10705050), National Natural Science Foundation of China (Grant Nos.~10875070, 10805031, and 10905032), by China Postdoctoral Science Foundation (Grant No.~2008

Cite this article: 

Liu Wen-Xin(刘文鑫), Tang Chuan-Xiang(唐传祥), and Huang Wen-Hui(黄文会) Characteristics of terahertz coherent transition radiation generated from picosecond ultrashort electron bunches 2010 Chin. Phys. B 19 062902

[1] Dzuba V A, Flambaum V V and Sushkov O P 1995 Phys. Rev. A 51 3454
[2] Safronova M S, Johnson W R and Derevianko A 1999 Phys. Rev. A 60 4476
[3] B\'{\hi emont E, Quinet P and Renterghem V V 1998 J. Phys. B: At. Mol. Opt. Phys. 31 5301
[4] B\'{\hi emont E, Fivet1 V and Quinet P 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4193
[5] Dzuba V A, Johnson W R and Safronova M S 2005 Phys. Rev. A 72 022503
[6] Sapirstein J and Cheng K T 2005 Phys. Rev. A 71 022503
[7] Safronova U I, Johnson W R and Safronova M S 2006 Phys. Rev. A 74 042511
[8] Migdalek J and Glowacz-Proszkiewicz A 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4143
[9] Safronova U I, Johnson W R and Safronova M S 2007 Phys. Rev. A 76 042504
[10] Ma K, Huang S Z, Yu J M and Liu F 2009 J. At. Mol. Phys . 26 39 (in Chinese)
[11] Zheng N W and Xin H W 1991 J. Phys . B: At. Mol. Opt. Phys . 24 1187
[12] Zheng N W, Wang T, Yang R and Wu Y G 2000 J. Chem. Phys . 112 7042
[13] Zheng N W, Zhou T, Wang T, Ma D, Yang R and Lin X 2001 Chin. J. Chem. Phys . 14 292 (in Chinese)
[14] Zheng N W, Wang T and Ma D X 2004 Int. J. Quantum Chem . 98 281
[15] Huang S Z, Ma K, Wu C Y and Ni X B 2008 Acta Phys. Sin. 57 5469 (in Chinese)
[16] Huang S Z, Ma K, Yu J M and Liu F 2008 Chin. Phys. B 17 4175
[17] Martin W C 1980 J. Opt. Soc. Am. 70 784
[18] NIST Atomic Spectra Database 2001 {National Institute of Standards and Technology http://physics.nist.gov/cgi-bin/AtData/display.ksh\\ Energy Levels Data 2006 National Institute of Standards and Technology http://physics.nist.gov/cgi-bin/AtData/display.ksh
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[3] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[4] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[5] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[6] Physical properties of relativistic electron beam during long-range propagation in space plasma environment
Bi-Xi Xue(薛碧曦), Jian-Hong Hao(郝建红), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2021, 30(10): 104103.
[7] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[8] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[9] Hybrid-PIC/PIC simulations on ion extraction by electric field in laser-induced plasma
Xiao-Yong Lu(卢肖勇), Cheng Yuan(袁程), Xiao-Zhang Zhang(张小章), Zhi-Zhong Zhang(张志忠). Chin. Phys. B, 2020, 29(4): 045201.
[10] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[11] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[12] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[13] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[14] Implicit electrostatic particle-in-cell/Monte Carlo simulation for the magnetized plasma: Algorithms and application in gas-inductive breakdown
Wang Hong-Yu (王虹宇), Sun Peng (孙鹏), Jiang Wei (姜巍), Zhou Jie (周杰), Xie Bai-Song (谢柏松). Chin. Phys. B, 2015, 24(6): 065207.
[15] A tunable magnetically insulated transmission line oscillator
Fan Yu-Wei (樊玉伟), Wang Xiao-Yu (王晓玉), He Liang (赫亮), Zhong Hui-Huang (钟辉煌), Zhang Jian-De (张建德). Chin. Phys. B, 2015, 24(3): 035203.
No Suggested Reading articles found!