Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064501    DOI: 10.1088/1674-1056/ab8627
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quasi-canonicalization for linear homogeneous nonholonomic systems

Yong Wang(王勇)1, Jin-Chao Cui(崔金超)1, Ju Chen(陈菊)2, Yong-Xin Guo(郭永新)3
1 School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China;
2 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
3 College of Physics, Liaoning University, Shenyang 110036, China
Abstract  For conservative linear homogeneous nonholonomic systems, there exists a cotangent bundle with the symplectic structure dπμ∧dξμ, in which the motion equations of the system can be written into the form of the canonical equations by the set of quasi-coordinates πμ and quasi-momenta ξμ. The key to construct this cotangent bundle is to define a set of suitable quasi-coordinates πμ by a first-order linear mapping, so that the reduced configuration space of the system is a Riemann space with no torsion. The Hamilton-Jacobi method for linear homogeneous nonholonomic systems is studied as an application of the quasi-canonicalization. The Hamilton-Jacobi method can be applied not only to Chaplygin nonholonomic systems, but also to non-Chaplygin nonholonomic systems. Two examples are given to illustrate the effectiveness of the quasi-canonicalization and the Hamilton-Jacobi method.
Keywords:  quasi-canonicalization      nonholonomic systems      first-order linear mapping      Hamilton-Jacobi method  
Received:  08 February 2020      Revised:  13 March 2020      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.40.Yy (Geometric mechanics)  
  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  
  02.40.Ky (Riemannian geometries)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11972177, 11972122, 11802103, 11772144, 11872030, and 11572034) and the Scientific Research Starting Foundation for Scholars with Doctoral Degree of Guangdong Medical University (Grant Nos. B2019042 and B2019021).
Corresponding Authors:  Yong-Xin Guo     E-mail:  yxguo@lnu.edu.cn

Cite this article: 

Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新) Quasi-canonicalization for linear homogeneous nonholonomic systems 2020 Chin. Phys. B 29 064501

[1] Neimark J I and Fufaev N A 1972 Dynamics of nonholonomic systems (Rhode Island: American Mathematical Society) pp. 3-6
[2] Mei F X 1990 Advanced analytical mechanics (Beijing: Beijing Institute of Technology Press) pp. 1-12 (in Chinese)
[3] Chen B 2012 Analytical dynamics, Vol. 2 (Beijing: Peking University Press) pp. 5-86 (in Chinese)
[4] Xu X X and Zhang Y 2019 Chin. Phys. B 28 120402
[5] Jin S X and Zhang Y 2018 Chin. Phys. B 27 020502
[6] Liu C, Liu S X and Mei F X 2016 Chin. Phys. B 25 124501
[7] Liu S X, Liu C, Hua W and Guo Y X 2016 Chin. Phys. B 25 114501
[8] Zhang F, Li W, Zhang Y Y, Xue X C and Jia L Q 2014 Acta Phys. Sin. 63 164501 (in Chinese)
[9] Zhao G L, Chen L Q, Fu J L and Hong F Y 2013 Chin. Phys. B 22 030201
[10] Song D, Liu C and Guo Y X 2013 Acta Phys. Sin. 62 094501 (in Chinese)
[11] Wu H B and Mei F X 2010 Chin. Phys. B 19 030303
[12] Bloch A M, Baillieul J, Crouch P and Marsden J E 2003 Nonholonomic Mechanics and Control (London: Springer) pp. 207-439
[13] Bullo F and Lewis A D 2005 Geometric Control of Mechanical Systems (New York: Springer) pp. 198-246
[14] Haddout S 2018 J. Geom. Phys. 123 495
[15] Zhang Y W, Wang J H, Xu Y and Yang D D 2019 Chin. Phys. B 28 030501
[16] Xu Z Y, Wang Q and Wang Q Y 2017 Appl. Math. Mech. Engl. Ed. 38 1733
[17] Chen J and Zhang Y 2015 Acta Phys. Sin. 64 034502 (in Chinese)
[18] Wu H B and Mei F X 2014 Appl. Math. Mech. 35 1293
[19] Fric B, Porez M and Mauny J 2017 J. Nonlinear Sci. 28 943
[20] Jorge C M 2002 Lec. Notes Math. 52 673
[21] Chitour Y, Molina M G, Kokkonen P and Markina I 2016 J. Geom. Anal. 26 2542
[22] Borisov A V, Kilin A A and Mamaev I S 2018 Regul. Chaotic Dyn. 23 339
[23] Benito H B 2018 J. Math. Phys. 59 062901
[24] Chhabra R and Emami M R 2014 Mech. Mach. Theory 82 231
[25] Mei F X 2013 Analytical Mechanics, Vol. 1 (Beijing: Beijing Institute of Technology Press) pp. 272-287 (in Chinese)
[26] Arnold V I 1978 Mathematical Methods of Classical Mechanics(New York: Spriner-Verlag) pp.161-271
[27] Westenholtz C N 1981 Differential Forms in Mathematical Physics (Amsterdam: North-Horland Publishing Company) pp. 389-439
[28] Vitagliano L 2012 Int. J. Geom. Methods Mod. Phys. 9 1260008
[29] de Len M and Vilari S 2014 Int. J. Geom. Methods Mod. Phys. 11 1450007
[30] Cambronero J and Javier P A 2019 J. Nonlinear Math. Phys. 26 650
[31] Wang Y, Mei F X, Xiao J and Guo Y X 2017 Acta Phys. Sin. 66 054501 (in Chinese)
[32] Xiao J, Liu C and Wang Y 2017 Appl. Math. Mech. 38 708 (in Chinese)
[33] Feng K and Qin M Z 2010 Symplectic geometric algorithms for Hamiltonian systems (New York: Spriner) pp. 165-212
[34] Guo Y X, Luo S K and Mei F X 2004 Adv. Mech. 34 477 (in Chinese)
[35] Mei F X 2013 Analytical Mechanics, Vol. 2 (Beijing: Beijing Institute of Technology Press) pp. 313-316 (in Chinese)
[36] Hamel G 1904 Z. Math. Phys. 50 1
[37] Block A M, Marsden J E and Zenkov D V 2009 Dynamical Systems 24 187
[38] Ball K and Zenkov D V 2015 Fields Institute Communications 73 477
[39] Crampin M and Mestdag T 2010 Dynamical Systems 25 159
[40] Wang Y and Guo Y X 2005 Acta Phys. Sin. 54 5517 (in Chinese)
[41] Wang Y, Guo Y X, Lv Q S and Liu C 2009 Acta Phys. Sin. 58 5142 (in Chinese)
[42] Wang Y, Liu C, Xiao J and Mei F X 2018 Appl. Math. Mech. Engl. Ed. 39 733
[43] Wang Y, Wu X D and Cao H Y 2019 J. Dyn. Control 17 1672
[44] Ohsawa T, Fermandez O E, Bloch A M and Zenkov D V 2011 J. Geom. Phys. 61 1263
[45] Bizyaev I A, Borisov A V and Mamaev I S 2015 Russ. J. Math. Phys. 22 444
[46] Balseiro P 2017 J. Nonlinear Sci. 27 2001
[47] Kleinert H 1990 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, 4th edn. (Singapore: World Scientific) pp. 1-88
[48] Kleinert H 1989 Gauge Fields in Condensed Matters II: Stresses and Defects (Singapore: World Scientific) pp. 1333-1433
[49] Kleinert H and Pelster A 1999 Gen. Relat. Gravit. 31 1439
[50] Kleinert H and Shabanov S V 1998 J. Phys. A: Math. Gen. 31 7005
[51] Shabanov S V 1998 J. Phys. A: Math. Gen. 31 5177
[52] Wang Y 2002 Construction of Riemann Cartan spaces and its application in the study of constrained systems, MS Thesis (Shenyang: Liaoning University) (in Chinese)
[53] Guo Y X, Wang Y, Chee Y G and Mei F X 2005 J. Math. Phys. 45 062902
[54] Guo Y X, Liu S X, Liu C, Luo S K and Wang Y 2007 J. Math. Phys. 48 082901
[55] Guo Y X, Liu C, Wang Y, Liu S X and Chang P 2010 Sci. China Phys. Mech. 2010 1707
[1] Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes
T. Ibungochouba Singh. Chin. Phys. B, 2015, 24(7): 070401.
[2] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[3] Lie–Mei symmetry and conserved quantities of the Rosenberg problem
Liu Xiao-Wei(刘晓巍) and Li Yuan-Cheng(李元成). Chin. Phys. B, 2011, 20(7): 070204.
[4] Decomposition of almost-Poisson structure of generalised Chaplygin's nonholonomic systems
Liu Chang(刘畅), Chang Peng(常鹏), Liu Shi-Xing(刘世兴), and Guo Yong-Xin(郭永新). Chin. Phys. B, 2010, 19(3): 030302.
[5] Weak Noether symmetry for nonholonomic systems of non-Chetaev type
Xie Jia-Fang(解加芳), Gang Tie-Qiang(冮铁强), and Mei Feng-Xiang(梅凤翔). Chin. Phys. B, 2008, 17(9): 3175-3179.
[6] CUMULANTS OF STOCHASTIC RESPONSE FOR A CLASS OF SPECIAL NONHOLONOMIC SYSTEMS
Shang Mei (尚玫), Zhang Yi (张毅). Chin. Phys. B, 2001, 10(1): 7-11.
No Suggested Reading articles found!