Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060701    DOI: 10.1088/1674-1056/ac43a5
GENERAL Prev   Next  

Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber

Jian-Fei Liao(廖健飞)1,3, Dao-Ming Lu(卢道明)1, Li-Jun Chen(陈丽军)1, and Tian-Ye Huang(黄田野)2,†
1 School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan 354300, China;
2 School of Mechanical Engineering and Electronic Information, China University of Geosciences(Wuhan), Wuhan 430074, China;
3 College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China
Abstract  A new design of surface plasmon resonance (SPR) sensor employing circular-lattice holey fiber to achieve high-sensitivity detection is proposed. The sensing performance of the proposed sensor is numerically investigated and the results indicate that our proposed SPR sensor can be applied to the near-mid infrared detection. Moreover, the maximum wavelength sensitivity of our proposed sensor can reach as high as 1.76×104 nm/refractive index unit (RIU) and the maximum wavelength interrogation resolution can be up to 5.68×10-6 RIU when the refractive index (RI) of analyte lies in (1.31, 1.36). Thanks to its excellent sensing performance, our proposed SPR sensor will have great potential applications for biological analytes detection, food safety control, bio-molecules detection and so on.
Keywords:  surface plasmon resonance      holy fiber      fiber optics sensor  
Received:  16 October 2021      Revised:  13 December 2021      Accepted manuscript online:  16 December 2021
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61765003) and the Scientific Research Foundation for the Wuyi University (Grant No. YJ202104).
Corresponding Authors:  Tian-Ye Huang     E-mail:

Cite this article: 

Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野) Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber 2022 Chin. Phys. B 31 060701

[1] Yang Z, Xia L, Li C, Chen X and Liu D 2019 Opt. Commun. 430 195
[2] Sharma A K, Kaur B and Marques C 2018 Optik 218 164891
[3] Luan N N, Zhao L, Lian Y D and Lou S Q 2018 IEEE Photonics J. 10 6803707
[4] Liu C, Su W, Wang F, Li X, Liu Q, Mu H, Sun T and Chu P K 2018 IEEE Photo. Technol. Lett. 30 1471
[5] Ding Z P, Liao J F and Zeng Z K 2021 Acta Phys. Sin. 70 074207 (in Chinese)
[6] Haque E, Hossain M A, Ahmed F and Namihira Y 2018 IEEE Sens. J. 18 8278
[7] Liu J, Liang H Q, Liu B, He X D and Chen Z P 2019 Opt. Fiber Technol. 48 248
[8] Pander A K, Sharma A K and Marques C 2020 Materials 13 1623
[9] Sharma A K, Pandey A K and Kaur B 2018 Opt. Fiber Technol. 43 20
[10] Zhao Y, Lei M, Liu S and Zhao Q 2018 Sens. Actuators B Chem. 261 226
[11] Rahman Md M, Molla Md A, Paul A K, Based Md A, Rana Md M and Anower M S 2020 Results Phys. 18 103313
[12] Han H, Hou D, Zhao L, Luan N, Song L, Liu Z, Lian Y, Liu J and Hu Y 2020 Sensor 20 1009
[13] Li T, Zhu L, Yang X, Lou X and Yu L 2020 Sensor 20 741
[14] Fan Z 2019 Opt. Fiber Technol. 50 194
[15] Azzam S I, Hameed M F O, Shehata R E A, Heikal A and Obayya S 2016 Opt. Quantum. Electron. 48 1
[16] Rifat A A, Ahmed R, Mahdiraji G A and Adikan F R M 2017 IEEE Sens. J. 17 2776
[17] Dash J N and Jha R 2015 Plasmonics 10 1123
[18] Rifat A A, Mahdiraji G A, Chow D M, Shee Y G, Ahmed R and Adikan F R M 2015 Sensor 15 11499
[19] Otupiri R, Akowuah E, Haxha S, Ademgil H, AbdelMalek F and Aggoun A 2014 IEEE Photonics J. 6 6801711
[20] Rifat A A, Mahdiraji G A, Sua Y M, Shee Y G, Ahmed R, Chow D M and Adikan F R M 2015 IEEE Photo. Technol. Lett. 27 1628
[21] Huang T 2017 Plasmonics 12 583
[22] Liu C, Yang L, Lu X, Liu Q, Wang F, Lv J, Sun T, Mu H and Chu P K 2017 Opt. Express 25 14227
[23] Tong K, Wang F, Wang M, Dang P and Wang Y 2018 Opt. Fiber Technol. 46 306
[24] Wang J, Liu C, Wang F, Su W, Yang L, J Lv, Fu G, Li X, Liu Q, Sun T and Chu P K 2020 Results Phys. 18 103240
[25] Ghosh G, Endo M and Iwasaki T 1994 J. Lightwave Technol. 12 1338
[26] Liao J, Ding Z, Xie Y, Wang X, Zeng Z and Huang T 2020 Opt. Fiber Technol. 60 102316
[27] Chakma S, Khalek M A, Paul B K, Ahmed K, Hasan M R and Bahar A N 2018 Sens. Bio-Sens. Res. 18 7
[28] Dash J N and Jha R 2014 IEEE Photo. Technol. Lett. 26 595
[29] Chen X, Xia L and Li C 2018 IEEE Photonics J. 10 6800709
[30] Zhang S, Li J, Li S, Liu Q, Wu J and Guo Y 2018 J. Phys. D: Appl. Phys. 51 305104
[31] Wu M, Liu X Y, Zhou G Y, Xia C M, Li B Y and Hou Z Y 2019 Chin. Phys. B 28 124202
[32] Abdullah H, Ahmed K and Mitu S A 2020 Results Phys. 17 103151
[33] Bing P, Sui J, Wu G, Guo X, Li Z, Tan L and Yao J 2020 Plasmonics 15 1071
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[5] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[6] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[7] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[8] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[9] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[10] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[11] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[12] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[13] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[14] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[15] Fiber cladding SPR bending sensor characterized by two parameters
Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yong Wei(魏勇), Yudong Su(苏于东), Ping Wu(吴萍), Lingling Li(李玲玲), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2020, 29(12): 120701.
No Suggested Reading articles found!