Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100503    DOI: 10.1088/1674-1056/21/10/100503
GENERAL Prev   Next  

Symmetry breaking in the opinion dynamics of a multi-group project organization

Zhu Zhen-Tao (朱振涛)a b, Zhou Jing (周晶)a, Li Ping (李平)c, Chen Xing-Guang (陈星光)a
a School of Management and Engineering, Nanjing University, Nanjing 210093, China;
b School of Economics and Management, Nanjing Institute of Technology, Nanjing 211167, China;
c Department of Basic Sciences, Nanjing Institute of Technology, Nanjing 211167, China
Abstract  A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.
Keywords:  opinion dynamics      pitchfork bifurcation      symmetry breaking      project management  
Received:  07 February 2012      Revised:  23 April 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.70.Jk (Critical point phenomena)  
  89.65.Ef (Social organizations; anthropology ?)  
  02.30.Oz (Bifurcation theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 70831002) and Humanity and Social Science Youth Foundation of Ministry of Education of China (Grant No. 12YJCZH017).
Corresponding Authors:  Zhu Zhen-Tao     E-mail:  zztnit@gmail.com

Cite this article: 

Zhu Zhen-Tao (朱振涛), Zhou Jing (周晶), Li Ping (李平), Chen Xing-Guang (陈星光) Symmetry breaking in the opinion dynamics of a multi-group project organization 2012 Chin. Phys. B 21 100503

[1] van Marrewijk A, Clegg S R, Pitsis T S and Veenswijk M 2008 Int. J. Proj. Manag. 26 591
[2] van Marrewijk A 2007 Int. J. Proj. Manag. 25 290
[3] Centola D 2010 Science 329 1194
[4] Centola D, Gonzalez-Avella J C, Eguiluz V M and San Miguel M 2007 J. Conflict Resolut. 51 905
[5] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[6] Lorenz J 2007 Int. J. Mod. Phys. C 18 1819
[7] Eguiluz V M, Zimmermann M G, Cela-Conde C J and Miguel M S 2005 Am. J. Soc. 110 977
[8] Gardenes G J, Campillo M, Flor L M and Moreno Y 2007 Phys. Rev. Lett. 98 108103
[9] Nowak M A 2006 Science 314 1560
[10] Nowak M A, Sasaki A, Taylor C and Fudenberg D 2004 Nature 428 646
[11] Li P P and Hui P M 2008 Eur. Phys. J. B 61 371
[12] Miguel M S, Eguiluz V M, Toral R and Klemm K 2005 Comput. Sci. Eng. 7 67
[13] Shao J, Havlin S and Stanley H E 2009 Phys. Rev. Lett. 103 18701
[14] Lin Y T, Yang H, Rong Z and Wang B H 2010 Int. J. Mod. Phys. C 21 1011
[15] Yang H X, Wu Z X, Zhou C, Zhou T and Wang B H 2009 Phys. Rev. E 80 46108
[16] Gabbay M 2007 Physica A 378 118
[17] Axelrod R 1997 J. Conflict Resolut. 41 203
[18] Feng G, Gao X, Dong W and Li J 2008 Chaos, Solitons and Fractals 37 487
[19] Feng C F, Guan J Y, Wu Z X and Wang Y H 2010 Chin. Phys. B 19 060203
[20] Shi X M, Shi L and Zhang J F 2010 Chin. Phys. B 19 038701
[21] Zhang X D, Wang Z, Zheng F F and Yang M 2012 Chin. Phys. B 21 030205
[22] Baronchelli A, Castellano C and Pastor-Satorras R 2011 Phys. Rev. E 83 066117
[23] Yiu K and Cheung S O 2006 Build Environ. 41 438
[24] Weidlich W and Huebner H 2008 J. Econ. Behav. Organ. 67 1
[25] Friedkin N E and Johnsen E C 1999 Adv. Group Pro. 16 1
[26] Deffuant G, Neau D, Amblard F and Weisbuch G 2000 Adv. Complex Syst. 1 87
[27] Weisbuch G, Deffuant G and Amblard F 2005 Physica A 353 555
[28] Seydel R 2010 Practical Bifurcation and Stability Analysis (Berlin: Springer-Verlag) pp. 74, 75
[29] Dhooge A, Govaerts W and Kuznetsov Y A 2003 ACM T. Math. Software 29 141
[30] Dhooge A, Govaerts W, Kuznetsov Y, Meijer H and Sautois B 2008 Math. Comput. Model. Dyn. 14 147
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[3] Voter model on adaptive networks
Jinming Du(杜金铭). Chin. Phys. B, 2022, 31(5): 058902.
[4] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[5] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[6] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[7] Spurious symmetry-broken phase in a bidirectional two-lane ASEP with narrow entrances
Bo Tian(田波), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬), Bin Jia(贾斌). Chin. Phys. B, 2017, 26(2): 020503.
[8] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
[9] Statistical physics of hard combinatorial optimization:Vertex cover problem
Zhao Jin-Hua (赵金华), Zhou Hai-Jun (周海军). Chin. Phys. B, 2014, 23(7): 078901.
[10] Imperfect pitchfork bifurcation in asymmetric two-compartment granular gas
Zhang Yin (张因), Li Yin-Chang (李寅阊), Liu Rui (刘锐), Cui Fei-Fei (崔非非), Pierre Evesque, Hou Mei-Ying (厚美瑛). Chin. Phys. B, 2013, 22(5): 054701.
[11] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜). Chin. Phys. B, 2013, 22(4): 040503.
[12] Asymmetric simple exclusion processes with complex lattice geometries: A review of models and phenomena
Liu Ming-Zhe (刘明哲), Li Shao-Da (李少达), Wang Rui-Li. Chin. Phys. B, 2012, 21(9): 090510.
[13] Spontaneous symmetry breaking vacuum energy in cosmology
Zhou Kang(周康), Yue Rui-Hong(岳瑞宏), Yang Zhan-Ying(杨战营), and Zou De-Cheng(邹德成) . Chin. Phys. B, 2012, 21(7): 079801.
[14] Pitchfork bifurcation and circuit implementation of a novel Chen hyper-chaotic system
Dong En-Zeng(董恩增), Chen Zeng-Qiang(陈增强), Chen Zai-Ping(陈在平), and Ni Jian-Yun(倪建云) . Chin. Phys. B, 2012, 21(3): 030501.
[15] Seeing time-reversal transmission characteristics through kinetic anti-ferromagnetic Ising chain
Chen Ying-Ming(陈英明) and Wang Bing-Zhong(王秉中) . Chin. Phys. B, 2012, 21(2): 026401.
No Suggested Reading articles found!