Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 030501    DOI: 10.1088/1674-1056/26/3/030501
GENERAL Prev   Next  

Rapidly calculating the partition function of macroscopic systems

Jing-Tian Li(李菁田)1, Bo-Yuan Ning(宁博元)2, Le-Cheng Gong(龚乐诚)1, Jun Zhuang(庄军)2, Xi-Jing Ning(宁西京)1
1 Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China;
2 Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
Abstract  

It has remained an open problem to accurately compute the partition function of macroscopic systems since the establishment of statistical physics. A rapid method approaching this problem was presented and was strictly tested by molecular dynamic (MD) simulations on Ar atoms in both dense gaseous and liquid states. The outcomes from the method on the internal energy and the work of isothermal expansion (and therefore the free energy) are in good agreement with the MD simulations, suggesting the method would be immediately applied in vast areas.

Keywords:  partition function      statistical physics      free energy calculation  
Received:  04 September 2016      Revised:  05 December 2016      Accepted manuscript online: 
PACS:  05.20.Gg (Classical ensemble theory)  
  05.20.Jj (Statistical mechanics of classical fluids)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: 

Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073).

Corresponding Authors:  Xi-Jing Ning     E-mail:  xjning@fudan.edu.cn

Cite this article: 

Jing-Tian Li(李菁田), Bo-Yuan Ning(宁博元), Le-Cheng Gong(龚乐诚), Jun Zhuang(庄军), Xi-Jing Ning(宁西京) Rapidly calculating the partition function of macroscopic systems 2017 Chin. Phys. B 26 030501

[1] Hansen K 2013 Statistical Physics of Nanoparticles in the Gas Phase (Dordrecht: Springer-Verlag) pp. 1-25
[2] Hendriks E, Walsh J and van Bergen A 1997 Journal of Statistical Physics 87 1287
[3] Wang Y K, Wei D Q, Gu R X, Fan H M and Ulmschneider J 2013 Canadian Journal of Chemistry 91 769
[4] Morriss Andrews A and Shea J E 2015 Annu. Rev. Chem. 66 643
[5] Alexander V Y 2011 Theory of Phase Transition in Polypeptides and Proteins (Berlin Heidelberg: Springer-Verlag) pp. 1-6
[6] Do H and Wheatley R J 2013 The Journal of Chemical Theory and Computation 9 165
[7] Hale B and Kiefer J 1975 Journal of Statistical Physics 12 437
[8] Mullin J W 2001 Crystallization (4th Edn.) (Oxford: Butterworth-Heinemann) pp. 135-179
[9] Busch R, Schroers J and Wang W H 2007 MRS Bulletin 32 620
[10] Zwanzig R W 1954 The Journal of Chemical Physics 22 1420
[11] Henderson D and Barker J A 1970 Phys. Rev. A 1 1266
[12] Chipot C and Pohorille A 2007 Free Energy Calculations (Berlin Heidelberg: Springer-Verlag) pp. 37-50
[13] Ferrenberg A M and Swendsen R H 1988 Phys. Rev. Lett. 61 2635
[14] Wang J S, Tay T K and Swendsen R H 1999 Phys. Rev. Lett. 82 476
[15] Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050
[16] Ying W L, Wust T and Landau D P 2011 Computer Physics Communications 182 1896
[17] Caparica A A and Cunha-Netto A G 2012 Phys. Rev. E 85 046702
[18] Komura Y and Okabe Y 2012 Phys. Rev. E 85 010102
[19] Zhou C and Bhatt R N 2005 Phys. Rev. E 72 025701
[20] Caparica A A 2014 Phys. Rev. E 89 043301
[21] Do H, Hirst J D and Wheatley R J 2011 The Journal of Chemical Physics 135 174105
[22] Allen M P and Swetnam A D 2012 Physics Procedia 34 6
[23] Gai L, Maerzke K A, Cummings P T and McCabe C 2012 The Journal of Chemical Physics 137 144901
[24] Aleksandrov T, Desgranges C and Delhommelle J 2012 Molecular Simulation 38 1265
[25] Gao J, Lin Z Z and Ning X J 2007 The Journal of Chemical Physics 126 174309
[26] Ye X X, Ming C, Hu Y C and Ning X J 2009 The Journal of Chemical Physics 130 164711
[27] Han X J, Wang Y, Lin Z Z, Zhang W, Zhuang J and Ning X J 2010 The Journal of Chemical Physics 132 064103
[28] Peng K, Ming C, Ye X X, Zhang W X, Zhaung J and Ning X J 2010 Acta Phys. Sin. 59 7245 (in Chinese)
[29] Ming C, Lin Z Z, Zhuang J and Ning X J 2012 Appl. Phys. Lett. 100 063119
[30] Li J T, Gong L C, Ning B Y, Zhuang J and Ning X J 2017 Submited to Science China
[31] Greiner W, Neise L and Stocker H 1995 Thermodynaics and Statistical Mechanics (New York: Springer-Verlag) p. 194
[32] Allen M P and Tildesley D J 1989 Computer Simulation of Liquid (Oxford: Clarendon Press) pp. 46-47
[1] Voter model on adaptive networks
Jinming Du(杜金铭). Chin. Phys. B, 2022, 31(5): 058902.
[2] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[3] Effect of a force-free end on the mechanical property of a biopolymer–A path integral approach
Zicong Zhou(周子聪), Béla Joós. Chin. Phys. B, 2016, 25(8): 088701.
[4] Coherent state evolution in a Raman dispersion process
Du Jian-Ming(杜建明), Ren Gang(任刚), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2011, 20(9): 090302.
[5] Study on high-temperature spectra of asymptotic asymmetric-top radical SiO2
Wu Dong-Lan(伍冬兰), Zeng Xue-Feng(曾学锋), Xie An-Dong(谢安东), and Wan Hui-Jun(万慧军). Chin. Phys. B, 2010, 19(4): 043301.
[6] The second-order dynamic phase transition and Lee--Yang zeros in Eggers urn model
Liu Xiao-Xian (刘小贤), Tong Pei-Qing (童培庆). Chin. Phys. B, 2008, 17(11): 3930-3935.
[7] Line intensities of the asymptotic asymmetric-top radical HO2 at high temperatures
Song Xiao-Shu(宋晓书), Cheng Xin-Lu(程新路), Yang Xiang-Dong(杨向东), Linghu Rong-Feng(令狐荣锋), and Lv Bing(吕兵). Chin. Phys. B, 2008, 17(1): 158-163.
No Suggested Reading articles found!