|
|
Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions (Z = 57, 60, 62, 64, 65) |
Bao-Ling Shi(施宝玲)1,†, Yi Qin(秦毅)1,†, Xiang-Fu Li(李向富)2, Bang-Lin Deng(邓邦林)3, Gang Jiang(蒋刚)1,‡, and Xi-Long Dou(豆喜龙)1 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 College of Electrical Engineering, Longdong University, Qingyang 745000, China; 3 College of Geophysics, Chengdu University of Technology, Chengdu 610059, China |
|
|
Abstract Atomic data of highly charged ions (HCIs) offer an attractive means for plasma diagnostic and stars identification, and the investigations on atomic data are highly desirable. Herein, based on the fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method, we have performed calculations of the fine-structure energy levels, wavelengths, transition rates, oscillator strengths, and line strengths for the lowest 21 states of 3p63d8-3p53d9 electric dipole (E1) transitions configurations in Fe-like ions (Z = 57, 60, 62, 64, 65). The correlation effects of valence-valence (VV) and core-valence (CV) electrons were systematically considered. In addition, we have taken into account transverse-photon (Breit) interaction and quantum electrodynamics (QED) corrections to treat accurately the atomic state wave functions in the final relativistic configuration interaction (RCI) calculations. Our calculated energy levels and transition wavelengths are in excellent agreement with the available experimental and theoretical results. Most importantly, we predicted some new transition parameters that have not yet been reported. These data would further provide critical insights into better analyzing the physical processes of various astrophysical plasmas.
|
Received: 13 November 2021
Revised: 14 December 2021
Accepted manuscript online:
|
PACS:
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
31.15.xr
|
(Self-consistent-field methods)
|
|
31.30.jc
|
(Relativistic corrections to atomic structure and properties)
|
|
95.30.Ky
|
(Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))
|
|
Corresponding Authors:
Gang Jiang,E-mail:gjiang@scu.edu.cn
E-mail: gjiang@scu.edu.cn
|
About author: 2021-12-18 |
Cite this article:
Bao-Ling Shi(施宝玲), Yi Qin(秦毅), Xiang-Fu Li(李向富), Bang-Lin Deng(邓邦林), Gang Jiang(蒋刚), and Xi-Long Dou(豆喜龙) Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions (Z = 57, 60, 62, 64, 65) 2022 Chin. Phys. B 31 053102
|
[1] Guo X L, Huang M, Yan J, Li S, Wang K, Si R and Chen C Y 2015 Chin. Phys. B 25 013101 [2] Fan J Z, Zhang D H, Chang Z W, Shi Y L and Dong C Z 2012 Chin. Phys. Lett. 29 073102 [3] Liu J P, Li C B and Zou H X 2017 Chin. Phys. B 26 103201 [4] Aggarwal S, Singh J and Mohan M 2013 Chin. Phys. B 22 033201 [5] Guo X L, Huang M, Yan J, Li S, Si R, Li C Y, Chen C Y, Wang Y S and Zou Y M 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144020 [6] Wu T, Kawasaki H, Shimada Y, Higashiguchi T and O'Sullivan G 2020 J. Phys. B: At. Mol. Opt. Phys. 53 225701 [7] Aggarwal S, Jha A K S, Khatri I, Singh N and Mohan M 2015 Chin. Phys. B 24 053201 [8] Silwal R, Dreiling J M, Sanders S C, Takacs E and Ralchenko Y 2020 J. Phys. B: At. Mol. Opt. Phys. 53 145002 [9] Sheil J, Dunne P, Higashiguchi T, Kos D, Long E, Miyazaki T, O'Reilly F, O'Sullivan G, Sheridan P and Suzuki C 2017 J. Phys. B: At. Mol. Opt. Phys. 50 065006 [10] Aggarwal S 2014 Chin. Phys. B 23 093203 [11] Wu T, Higashiguchi T, Li B, Arai G, Hara H, Kondo Y, Miyazaki T, Dinh T H, Dunne P, O'Reilly F and Sokell E 2016 J. Phys. B: At. Mol. Opt. Phys. 49 035001 [12] Shang X, Tian Y, Wang Q, Fan S, Bai W and Dai Z 2014 Mon. Not. R. Astron. Soc. 442 138 [13] Shang X, Wang Q, Tian Y, Wang C and Dai Z 2015 J. Phys. B: At. Mol. Opt. Phys. 48 085001 [14] Doron R, Fraenkel M, Mandelbaum P, Zigler A and Schwob J L 1998 Phys. Scr. 58 19 [15] Witthoeft M C, Bautista M A, Garcia J, Kallman T R, Mendoza C, Palmeri P and Quinet P 2011 Astrophys. J. Suppl. Ser. 196 7 [16] Ekberg J O, Feldman U and Reader J 1988 J. Opt. Soc. Am. B 5 1275 [17] Ekberg J O, Seely J F, Feldman U, Brown C M and Hulburt E O 1989 J. Opt. Soc. Am. B 6 1648 [18] Ralchenko Y, Draganic I N, Osin D, Gillaspy J D and Reader J 2011 Phys. Rev. A 83 032517 [19] Radtke R, Biedermann C, Mandelbaum P and Schwob J L 2007 J. Phys. Conf. Ser. 58 113 [20] Louzon E, Henis Z, Levi I, Hurvitz G, Ehrlich Y, Fraenkel M, Maman S and Mandelbaum P 2009 J. Opt. Soc. Am. B 26 959 [21] Brown G V, Hansen S B, Träbert E, Beiersdorfer P, Widmann K, Chen H, Chung H K, Clementson J H T and Gu M F 2008 Phys. Rev. E 77 066406 [22] Zhao Z L, Wang K, Li S, Si R, Chen C Y, Chen Z B, Yan J and Ralchenko Y 2018 At. Data Nucl. Data Tables 119 314 [23] Quinet P 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195007 [24] Clementson J, Beiersdorfer P, Brage T and Gu M F 2014 At. Data Nucl. Data Tables 100 577 [25] Wang K, Zhang C Y, Si R, Li S, Chen Z B, Zhao X H, Chen C Y and Yan J 2018 At. Data Nucl. Data Tables 123-124 114 [26] Chen Z B, Ma K, Wang H J, Wang K, Liu X B and Zeng J L 2017 At. Data Nucl. Data Tables 113 258 [27] Radžiūtė L, Gaigalas G, Kato D, Rynkun P and Tanaka M 2020 Astrophys. J. Suppl. Ser. 248 17 [28] Goyal A, Khatri I, Aggarwal S, Singh A K and Mohan M 2016 At. Data Nucl. Data Tables 107 406 [29] Podpaly Y A, Gillaspy J D, Reader J and Ralchenko Y 2014 J. Phys. B: At. Mol. Opt. Phys. 48 025002 [30] Li X F and Jiang G 2018 Chin. Phys. B 27 073101 [31] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules, Vol. 40 (New York: Springer) p. 384 [32] He X K, Liu J P, Zhang X, Shen Y and Zou H X 2018 Chin. Phys. B 27 083102 [33] Hao L H and Kang X P 2014 Eur. Phys. J. D 68 1 [34] Hu F 2021 Radiat. Phys. Chem. 108 109293 [35] Hao L H, Jiang G, Song S and Hu F 2008 At. Data Nucl. Data Tables 94 739 [36] Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004 [37] Jönsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597 [38] Li X F, Jia L P, Wang H B and Jiang G 2021 Chin. Phys. B 30 053102 [39] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197 [40] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184 [41] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207 [42] Sturesson L, Jönsson P and Fischer C F 2007 Comput. Phys. Commun. 177 539 [43] Gaigalas G, žalandauskas T and Rudzikas Z 2003 At. Data Nucl. Data Tables 84 99 [44] Gaigalas G, Fischer C F, Rynkun P and Jönsson P 2017 Atoms 5 6 [45] Hao L H, Jiang G and Hou H J 2010 Phys. Rev. A 81 022502 [46] Olsen J, Godefroid M R, Jönsson P, Malmqvist P Å and Fischer C F 1995 Phys. Rev. E 52 4499 [47] Fischer C F 2009 Phys. Scr. T134 014019 [48] Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215 [49] Hao L, Jiang G, Hu F, Wang C K, Wang Z B and Yang J M 2013 Chin. Phys. B 22 073202 [50] Hu F, Sun Y, Mei M, Pan Y, Wu M and Liu H 2021 J. Quantum Spectrosc. Radiat. Transfer 273 107842 [51] Hao L H and Jiang G 2011 Phys. Rev. A 83 012511 [52] Ivanova E P and Tsirekidze M A 1986 Phys. Scr. 34 35 [53] Khatri I, Goyal A, Aggarwal S, Singh A K and Mohan M 2015 Chin. Phys. B 24 103202 [54] Wang H W, Zhang L, Jiang G, Li X F and Wang H B 2018 Indian J. Phys. 92 137 [55] Malyshev A V, Glazov D A, Kozhedub Y S, Anisimova I S, Kaygorodov M Y, Shabaev V M and Tupitsyn I I 2021 Phys. Rev. Lett. 126 183001 [56] Hu F, Yang J, Wang C, Jing L, Chen S, Jiang G and Hao L 2011 Phys. Rev. A 84 042506 [57] Sun L, Wu M and Jiang G 2019 Indian J. Phys. 94 1 [58] Jönsson P and Bieroń J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074023 [59] Wang K, Chen Z B, Zhao X H, Chen C Y and Yan J 2019 J. Quantum Spectrosc. Radiat. Transfer 237 106640 [60] Wang K, Zhang X H, Zhang C Y, Dang W, Zhao X H, Chen Z B, Si R, Chen C Y and Yan J 2021 J. Quantum Spectrosc. Radiat. Transfer 261 107512 [61] Atalay B, Brage T, Jönsson P and Hartman H 2019 Astron. Astrophys. 631 A29 [62] Li W, Hartman H, Wang K and Jönsson P 2020 Astron. Astrophys. 643 A156 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|