ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures |
Daohan Ge(葛道晗)1,2,†, Yujie Zhou(周宇杰)1, Mengcheng Lv(吕梦成)1, Jiakang Shi(石家康)1, Abubakar A. Babangida1, Liqiang Zhang(张立强)1,2,‡, and Shining Zhu(祝世宁)2 |
1 Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China; 2 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract A new type of device consisting of a lithium niobate film coupled with a distributed Bragg reflector (DBR) was theoretically proposed to explore and release Bloch surface waves for applications in sensing and detection. The film and grating made of lithium niobate (LiNbO3) were placed on both sides of the DBR and a concentrated electromagnetic field was formed at the film layer. By adjusting the spatial incidence angle of the incident light, two detection and analysis modes were obtained, including surface diffraction detection and guided Bloch detection. Surface diffraction detection was used to detect the gas molecule concentrations, while guided Bloch detection was applied for the concentration detection of biomolecule-modulated biological solutions. According to the drift of the Fano curve, the average sensor sensitivities from the analysis of the two modes were 1560 °/RIU and 1161 °/RIU, and the maximum detection sensitivity reached 2320 °/RIU and 2200 °/RIU, respectively. This study revealed the potential application of LiNbO3 as a tunable material when combined with DBR to construct a new type of biosensor, which offered broad application prospects in Bloch surface wave biosensors.
|
Received: 04 July 2021
Revised: 05 October 2021
Accepted manuscript online: 11 October 2021
|
PACS:
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180098) and National Laboratory of Solid State Microstructures, Nanjing University (Grant No. M33042). |
Corresponding Authors:
Daohan Ge, Liqiang Zhang
E-mail: gedaohan@ujs.edu.cn;zhanglq4158@ujs.edu.cn
|
Cite this article:
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁) High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures 2022 Chin. Phys. B 31 044102
|
[1] Pochi Yeh A Y and Cho A Y 1978 Appl. Phys. Lett. 32 104 [2] Meade R D, Brommer K D, Rappe A M and Joannopoulos J D 1991 Phys. Rev. B 44 10961 [3] Kang X B, Liu L J, Lu H, Li H D and Wang Z G 2016 J. Opt. Soc. Am. A 33 997 [4] Aurelio D and Liscidini M 2017 Phys. Rev. B 96 045308 [5] Sinibaldi A, Fieramosca A, Rizzo R, Anopchenko A, Danz N, Munzert P, Magistris C, Barolo C and Michelotti F 2014 Opt. Lett. 39 2947 [6] Inan H, Poyraz M, Inci F, Lifson M A, Baday M, Cunningham B T and Demirci U 2017 Chem. Soc. Rev. 46 366 [7] Hu S, Zhao Y, Qin K, Retterer S T, Kravchenko I I and Weiss S M 2014 Acs Photon. 1 590 [8] Menabde S G, Mason D R, Kornev E E, Lee C and Park N 2016 Sci. Rep. 6 21523 [9] Zhong T and Zhang H 2020 Chin. Phys. B 29 094101 [10] Ge D H, Wei J X, Ding J, Zhang J, Ma C, Wang M C, Zhang L Q and Zhu S N 2020 ACS Appl. Nano Mater. 3 3011 [11] Zheng G, Cong J, Xu L and Wang J 2017 Appl. Phys. Express 10 042202 [12] Geng Y F, Wang Z N, Ma Y G and Gao F 2019 Acta Phys. Sin. 68 224101 (in Chinese) [13] Wang S S, Wang D Q, Hu X P, Li T and Zhu S N 2016 Chin. Phys. B 25 077301 [14] Zheng G, Cong J, Chen Y, Xu L and Xiao S 2017 Opt. Lett. 42 2984 [15] Kovalevich T, Ndao A, Suarez M, Tumenas S, Balevicius Z, Ramanavicius A, Baleviciute I, Hayrinen M, Roussey M, Kuittinen M, Grosjean T and Bernal M P 2016 Opt. Lett. 41 5616 [16] Shi J, Rezk A, Ma C, Zhang L, Yang P, Ge D and Zhu S 2019 Mater. Res. Experss 6 095042 [17] Kang X B, Wen L W and Wang Z G 2017 Opt. Commun. 383 531 [18] Kang X B, Lu H and Wang Z G 2018 Opt. Express 26 12769 [19] Ge D, Shi J, Rezk A, Ma C, Zhang L, Yang P and Zhu S 2019 Nanoscale Res. Lett. 14 319 [20] Balevicius Z and Baskys A 2019 Materials 12 3147 [21] Gryga M, Ciprian D and Hlubina P 2020 Sensors-Basel 20 5119 [22] Kovalevich T, Belharet D, Robert L, Kim M S, Herzig H P, Grosjean T and Bernal M P 2017 Photon. Res. 5 649 [23] Yang Q R, Qin L L, Cao G Y, Zhang C and Li X F 2018 Opt. Lett. 43 639 [24] Toma K, Descrovi E, Toma M, Ballarini M, Mandracci P, Giorgis F, Mateescu A, Jonas U, Knoll W and Dostalek J 2013 Biosens. Bioelectron. 43 108 [25] Ge D, Shi J, Rezk A, Zhang Y, Wei J, Zhang L and Zhu S 2019 Appl. Opt. 58 3187 [26] Wang F and Wei B 2019 Acta Phys. Sin. 68 244101 (in Chinese) [27] Roussey M, Bernal M P, Courjal N, Van Labeke D, Baida F I and Salut R 2006 Appl. Phys. Lett. 89 241110 [28] Lu H, Sadani B, Courjal N, Ulliac G, Smith N, Stenger V, Collet M, Baida F I and Bernal M P 2012 Opt. Express 20 2974 [29] Chen L and Reano R M 2012 Opt. Express 20 4032 [30] Qiu W, Lu H, Baida F I and Bernal M P 2017 Photon. Res. 5 212 [31] Wang C, Zhang M, Stern B, Lipson M and Loncar M 2018 Opt. Express 26 1547 [32] Wang J, Bo F, Wan S, Li W, Gao F, Li J, Zhang G and Xu J 2015 Opt. Express 23 23072 [33] Luo X W, Zhang Q Y, Xu P, Zhang R, Liu H Y, Sun C W, Gong Y X, Xie Z D and Zhu S N 2019 Phys. Rev. A 99 063833 [34] Sun C W, Wu S H, Duan J C, Zhou J W, Xia J L, Xu P, Xie Z D, Gong Y X and Zhu S N 2019 Opt. Lett. 44 5598 [35] Lerario G, Ballarini D, Dominici L, Fieramosca A, Cannavale A, Holwill M, Kozikov A, Novoselov K S and Gigli G 2017 Appl. Sci.-Basel 7 1217 [36] Gan S W, Wang H Q, Liang J W, Dai X Y and Xiang Y J 2019 IEEE Sens. J. 19 8675 [37] Zou X J, Zheng G G and Chen Y Y 2018 Chin. Phys. B 27 054102 [38] Liao M L, Wei Y Y, Wang H L, Huang Y, Xu J, Liu Y, Guo G, Niu X J, Gong Y B and Park G S 2016 Chin. Phys. Lett. 33 090701 [39] Fan S H and Joannopoulos J D 2002 Phys. Rev. B 65 235112 [40] Qi Y P, Wang L Y, Zhang Y, Zhang T, Zhang B H, Deng X Y and Wang X X 2020 Chin. Phys. B 29 067303 [41] Maurya J B and Prajapati Y K 2016 Plasmonics 12 1121 [42] Cong J, Liu W, Zhou Z, Ren N, Ding G, Chen M and Yao H 2016 Opt. Mater. 62 261 [43] Magnusson R and Shokooh-Saremi M 2008 Opt. Express 16 3456 [44] Magnusson R, Wawro D, Zimmerman S and Ding Y W 2011 Sensors 11 1476 [45] Takashima Y, Haraguchi M and Naoi Y 2018 Sensor Actuat. B-Chem. 255 1711 [46] Li J S 2011 Opt. Laser Technol. 43 989 [47] Wang H H, Liu W X, Ma J, Liang Q, Qin W, Lartey P O and Feng X J 2020 Int. J. Min. Met. Mater. 27 830 [48] Jena S, Tokas R B, Thakur S and Udupa D V 2021 Physica E 126 114477 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|