Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050301    DOI: 10.1088/1674-1056/ac43b0
GENERAL Prev   Next  

Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state

Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲)
School of Computer and Network Security, Chengdu University of Technology, Chengdu 610059, China
Abstract  Quantum controlled teleportation is the transmission of the quantum state under the supervision of a third party. This paper presents the theoretical and experimental results of an arbitrary two-qubit quantum controlled teleportation scheme, in which the sender Alice only needs to perform two Bell state measurements and the receiver Bob can perform an appropriate unitary operation to reconstruct the arbitrary two-qubit states under the control of the supervisor Charlie. The operation process of the scheme is verified on the IBM quantum experience platform, and the accuracy of the transmitted quantum state is further checked by performing quantum state tomography. Meanwhile, a good fidelity is obtained by using the theoretical density matrix and the experimental density matrix. A sequence of photonic states is introduced to analyze the possible intercept-replace-resend, intercept-measure-resend, and entanglement-measure-resend attacks on this scheme. The results proved that our scheme is highly secure.
Keywords:  IBM quantum experience      controlled quantum teleportation      fidelity      quantum state tomography  
Received:  29 November 2021      Revised:  29 November 2021      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61802033 and 62172060) and the Key Research and Development Project of Sichuan Provincial Science and Technology Plan,China (Grant No.2020YFS0445).
Corresponding Authors:  Dong-Fen Li,E-mail:lidongfen17@cdut.edu.cn     E-mail:  lidongfen17@cdut.edu.cn
About author:  2021-12-16

Cite this article: 

Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲) Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state 2022 Chin. Phys. B 31 050301

[1] Zhou R G, Huo M Y, Hu W W and Zhao Y S 2021 IEEE Access 9 22986
[2] Qin H W, Tang W K S and Tso R 2020 IEEE J. Sel. Top. Quantum Electron. 26 6600106
[3] Shi R H 2019 IEEE Commun. Lett. 24 386
[4] Zhang Y X, Cao C, Wang T J and Wang C 2020 Int. J. Theor. Phys. 59 1957
[5] Zhao X, Li Y Q, Cheng L Y and Yang G H 2019 Int. J. Theor. Phys. 58 493
[6] Zhao N and Li W D 2020 Int. J. Theor. Phys. 59 2147
[7] Verma V, Singh N and Singh R S 2021 Int. J. Theor. Phys. 60 3973
[8] Yamagami T, Segawa E and Konno N 2021 Quantum Inf. Process. 20 224
[9] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[10] Chen X B, Zhang N, Lin S, Wen Q Y and Zhu F C 2008 Opt. Commun. 281 2331
[11] Chen N, Quan D, Yang H and Pei C 2015 The Journal of China Universities of Posts and Telecommunications 22 45
[12] Li X H and Ghose S 2014 Phys. Rev. A 90 052305
[13] Zang P, Yi T L, Hu C B and Tian F 2017 J. Jiangxi Norm. Univ. (Nat. Sci. Ed.) 41 127
[14] Shi L, Zhou K H, Wei J H, Zhu Y and Zhu Q L 2018 Adv. Math. Phys. 2018 4575438
[15] Yang Y M, Li D F, Liu M Z and Chen J L 2020 Int. J. Theor. Phys. 59 187
[16] Ramirez M D G, Falaye B J, Sun G H, Cruz-Irisson M and Dong S H 2017 Front. Phys. 12 120306
[17] Zhang W B and Li B S 2021 Mod. Phys. Lett. A 36 2150073
[18] Yuan H and Pan G Z 2020 Mod. Phys. Lett. A 35 2050192
[19] Li D F, Zheng Y D, Liu X F and Liu M Z 2021 Int. J. Theor. Phys. 60 1911
[20] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[21] Chen J L, Li D F, Liu M Z, Yang Y H and Zhou Q 2020 Int. J. Theor. Phys. 59 1402
[22] Shenoy K S, Sheth D Y, Behera B K and Panigrahi P K 2020 Quantum Inf. Process. 19 161
[23] Behera B K, Seth S, Das A and Panigrahi P K 2019 Quantum Inf. Process. 18 108
[24] Satyajit S, Srinivasan K, Behera B K and Panigrahi P K 2018 Quantum Inf. Process. 17 212
[25] Sk R, Baishya A, Behera B K and Panigrahi P K 2020 Quantum Inf. Process. 19 87
[26] Wei J, Ni M, Zhou M and Jiang W B 2018 Comput. Eng. 44 6
[27] Ghosh D, Agarwal P, Pandey P, Behera B K and Panigrahi P K 2018 Quantum Inf. Process. 17 153
[28] Warke A, Behera B K and Panigrahi P K 2020 Quantum Inf. Process. 19 407
[29] Ghosh S, Opala A, Matuszewski M, Paterek T and Liew T C H 2021 IEEE Trans. Neural Netw. Learn. Syst. 32 3148
[30] Sisodia M 2020 Quantum Inf. Process. 19 215
[31] Cai T, Kim D Y, Wang Y Z, Yuan M and Zhou H H 2016 Ann. Stat. 44 682
[32] Zhang J J, Li K Z, Cong S and Wang H T 2017 Signal Process. 139 136
[33] K V P, Joy D, Behera B K and Panigrahi P K 2017 Quantum Inf. Process. 17 274
[1] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[4] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[5] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[6] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[7] Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design
Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸). Chin. Phys. B, 2019, 28(1): 010304.
[8] Estimation of photon counting statistics with imperfect detectors
Xiao-Chuan Han(韩晓川), Dong-Wei Zhuang(庄东炜), Yu-Xuan Li(李雨轩), Jun-Feng Song(宋俊峰), Yong-Sheng Zhang(张永生). Chin. Phys. B, 2018, 27(7): 074208.
[9] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[10] An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection
Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平). Chin. Phys. B, 2017, 26(10): 100203.
[11] Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2016, 25(4): 040304.
[12] Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations
Jin Yu(喻进). Chin. Phys. B, 2016, 25(1): 018706.
[13] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
[14] Statistical properties of coherent photon-subtracted two-mode squeezed vacuum and its application in quantum teleportation
Zhang Guo-Ping (张国平), Zheng Kai-Min (郑凯敏), Liu Shi-You (刘世右), Hu Li-Yun (胡利云). Chin. Phys. B, 2014, 23(5): 050301.
[15] Instability, adiabaticity, and controlling effects of external fields for the dark state in a homonuclear atom–tetramer conversion system
Meng Shao-Ying (孟少英), Chen Xi-Hao (陈希浩), Wu Wei (吴炜), Fu Li-Bin (傅立斌). Chin. Phys. B, 2014, 23(4): 040306.
No Suggested Reading articles found!