ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources |
Qiang Tang(汤强)1,†, Pengzhan Liu(刘鹏展)2, and Shuai Tang(唐帅)3 |
1 Jiangsu Provincal Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian 223003, China; 2 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 3 Jiangsu Key Laboratory of Advanced Manufacturing Technology, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian 223003, China |
|
|
Abstract Rotational manipulation of massive particles and biological samples is essential for the development of miniaturized lab-on-a-chip platforms in the fields of chemical, medical, and biological applications. In this paper, a device concept of a two-dimensional acoustofluidic chamber actuated by multiple nonlinear vibration sources is proposed. The functional chamber enables the generation of acoustic streaming vortices for potential applications that include strong mixing of multi-phase flows and rotational manipulation of micro-/nano-scale objects without any rotating component. Using numerical simulations, we find that diversified acoustofluidic fields can be generated in the chamber under various actuations, and massive polystyrene beads inside can experience different acoustophoretic motions under the combined effect of an acoustic radiation force and acoustic streaming. Moreover, we investigate and clarify the effects of structural design on modulation of the acoustofluidic fields in the chamber. We believe the presented study could not only provide a promising potential tool for rotational acoustofluidic manipulation, but could also bring this community some useful design insights into the achievement of desired acoustofluidic fields for assorted microfluidic applications.
|
Received: 20 June 2021
Revised: 13 August 2021
Accepted manuscript online: 19 August 2021
|
PACS:
|
43.25.Nm
|
(Acoustic streaming)
|
|
43.35.-c
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
47.61.-k
|
(Micro- and nano- scale flow phenomena)
|
|
47.32.-y
|
(Vortex dynamics; rotating fluids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904117), the IndustryUniversity-Research Collaboration Project of Jiangsu Province, China (Grant No. BY2019058), the Scientific Research Foundation of Huaiyin Institute of Technology (Grant No. Z301B19529), and the Training Foundation of Postgraduate Supervisor (Grant No. Z206E20555). Dr. Qiang Tang thanks the Jiangsu Government Scholarship for Overseas Studies. |
Corresponding Authors:
Qiang Tang
E-mail: tangqiang102@126.com
|
Cite this article:
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅) Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources 2022 Chin. Phys. B 31 044301
|
[1] Zhang S, Wang Y, Onck P and Toonder J D 2020 Microfluid. Nanofluid. 24 24 [2] Alam M K, Koomson E, Zou H, Yi C, Li C W, Xu and Yang M 2018 Anal. Chim. Acta 1044 29 [3] Li L, Wang C, Nie Y, Yao B and Hu H 2020 TrAC Trend. Anal. Chem. 127 115905 [4] Shen F, Xu M, Wang Z and Liu Z M 2017 Appl. Phys. Express 10 097301 [5] Xia Y, Tang Y, Yu X, Wan Y, Chen Y, Lu H and Zheng S Y 2017 Small 13 1603135 [6] Antfolk M and Laurell T 2017 Anal. Chim. Acta 965 9 [7] Kurashina Y, Takemura K and Friend J 2017 Lab Chip 17 876 [8] Wang H, Chen L and Sun L 2017 Front. Mech. Eng. 12 510 [9] Patabadige D E W, Jia S, Sibbitts J, Sadeghi J, Sellens K and Culbertson C T 2016 Anal. Chem. 88 320 [10] Cheng L P, Zhang S Y and Xu X D 2016 Chin. Phys. Lett. 33 014301 [11] Jung W, Han J, Choi J W and Ahn C H 2015 Microelectron. Eng. 132 46 [12] Zhu Y, Meng X, Chen Y, Li J, Shao H, Liu Y, Pan L, Xu Y and Cheng J 2019 Sens. Actuators. B Chem. 303 127235 [13] Tian C, Tu Q, Liu W and Wang J 2019 TrAC Trend. Anal. Chem 117 146 [14] Yamawaki B, Mori R, Tsukagoshi K, Tsuchiya K, Yamashita K and Murata M 2019 Anal. Sci. 35 249 [15] Dekker S, Isgor P K, Feijten T, Segerink L I and Odijk M 2018 Microsyst. Nanoeng. 4 34 [16] Plouffe B D and Murthy S K 2014 Anal. Chem. 86 11481 [17] Vaccari L, Birada G, Grenci G, Pacor S and Businaro L 2012 J. Phys. Conf. Ser. 359 012007 [18] Yao J, Zhu G, Zhao T and Takei M 2019 Electrophoresis 40 1166 [19] Alnaimat F, Dagher S, Mathew B, Hilal-Alnqbi A and Khashan S 2018 Chem. Rec. 18 1596 [20] Paié P, Zandrini T, Vázquez R M, Osellame R and Bragheri F 2018 Micromachines 9 200 [21] Errarte A, Martin-Mayor A, Aginagalde M, Iloro I, Gonzalez E, Falcon-Perez J M, Elortza F and Bou-Alia M M 2020 Int. J. Therm. Sci. 156 106435 [22] Wu W H, Yang P F, Zhai W and Wei B B 2019 Chin. Phys. Lett. 36 084302 [23] Cheng Y, Wang Y, Ma Z, Wang W and Ye X 2016 Lab Chip 16 4517 [24] Tang W L, Xiang N, Zhang X J, Huang D and Ni Z H 2015 Acta Phys. Sin. 64 184703 (in Chinese) [25] Tsai C H, Wu X, Kuan D H, Zimmermann S, Zengerle R and Koltay P 2018 J. Micromech. Microeng. 28 084001 [26] Drinkwater B W 2020 Appl. Phys. Lett. 117 180501 [27] Chen Z, Liu X, Kojima M, Huang Q and Arai T 2020 Appl. Sci. 10 1260 [28] Yan N, Di W L, Hong Z Y, Xie W J and Wei B B 2019 Chin. Phys. Lett. 36 034303 [29] Connacher W, Zhang N, Huang A, Mei J, Zhang S, Gopesh T and Friend J 2018 Lab Chip 18 1952 [30] Fu Y Q, Luo J K, Nguyen N T, Walton A J, Flewitt A J, Zu X T, Li Y, McHale G, Matthews A, Iborra E, Du H and Milne W I 2017 Prog. Mater. Sci. 89 31 [31] Saeidi D, Saghafian M, Haghjooy Javanmard S and Wiklund M 2020 Micromachines 11 152 [32] Oyama T, Imashiro C, Kuriyama T, Usui H, Ando K, Azuma T, Morikawa A, Kodeki K, Takahara O and Takemura K 2021 J. Acoust. Soc. Am. 149 4180 [33] Lei J, Glynne-Jones P and Hill M 2017 Microfluid. Nanofluid. 21 23 [34] Bach J S and Bruus H 2019 Phys. Rev. E 100 023104 [35] Liu S, Yang Y, Ni Z, Guo X, Luo L, Tu J and Zhang D 2017 Sensors 17 1664 [36] Pavlic A, Baasch T and Dual J 2020 J. Acoust. Soc. Am. 148 2784 [37] Liu S, Ni Z, Xu G, Guo X, Tu J, Bruus H and Zhang D 2019 Phys. Rev. Appl. 11 044031 [38] Qian J, Ren J, Huang W, Lam R H and Lee J E Y 2021 IEEE Sens. J. 21 11999 [39] Wu J 2018 Fluids 3 108 [40] Tang Q, Zhou S, Huang L and Chen Z 2019 Micromachines 10 803 [41] Wiklund M, Green R and Ohlin M 2012 Lab Chip 12 2438 [42] Meng L, Cai F, Li F, Zhou W, Niu L and Zheng H 2019 J. Phys. D:Appl. Phys. 52 273001 [43] Lei J, Hill M, de León P, Albarrán C and Glynne-Jones P 2018 Microfluid. Nanofluid. 22 140 [44] Courtney C R, Drinkwater B W, Demore C E, Cochran S, Grinenko A and Wilcox P D 2013 Appl. Phys. Lett. 102 123508 [45] Karlsen J T and Bruus H 2017 Phys. Rev. Appl. 7 034017 [46] Tang Q, Liu P, Guo X, Zhou S and Dong Y 2020 Microfluid. Nanofluid. 24 1 [47] O'Rorke R, Winkler A, Collins D and Ai Y 2020 RSC Adv. 10 11582 [48] Bach J S and Bruus H 2020 Phys. Rev. Lett. 124 214501 [49] Raymond S J, Collins D J, O'Rorke R, Tayebi M, Ai Y and Williams J 2020 Sci. Rep. 10 8745 [50] Zhao Z F, Zhang W J, Niu L L, Meng L and Zheng H R 2018 Acta Phys. Sin. 67 194302 (in Chinese) [51] Zhang P, Chen C, Su X, Mai J D, Gu Y, Tian Z, Zhu H, Zhong Z, Fu H, Yang S, Chakrabarty K and Huang T J 2020 Sci. Adv. 6 eaba0606 [52] Devendran C, Carthew J, Frith J E and Neild A 2019 Adv. Sci. 6 1902326 [53] Läubli N F, Burri J T, Marquard J, Vogler H, Mosca G, Vertti-Quintero N, Shamsudhin N, deMello A, Grossniklaus U, Ahmed D and Nelson B J 2021 Nat. Commun. 12 2583 [54] Lei J, Cheng F and Li K 2020 Micromachines 11 240 [55] Muller P B and Bruus H 2015 Phys. Rev. E 92 063018 [56] Liu P, Tang Q, Su S and Hu J 2020 Sens. Actuat. A Phys. 318 112524 [57] Tang Q, Zhou S, Huang L and Chen Z 2019 Micromachines 10 803 [58] Ozcelik A, Nama N, Huang P H, Kaynak M, McReynolds M R, Hanna-Rose W and Huang T J 2016 Small 12 5120 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|