CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2 |
Weiwei Liu(刘维维)1,†, Dayu Yan(闫大禹)2,†, Zheng Zhang(张政)1, Jianting Ji(籍建葶)2, Youguo Shi(石友国)2,‡, Feng Jin(金峰)2,§, and Qingming Zhang(张清明)2,3 |
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid (QSL) candidates hosting a large number of members. In this paper we report the crystal growth and magnetic measurements of KErTe2, which is the first member of telluride in the family. Compared to its cousins of oxides, sulfides and selenides, KErTe2 retains the high symmetry of R3m and Er3+ ions still sit on a perfect triangular lattice. The separation between adjacent magnetic layers is expectedly increased, which further enhances the two dimensionality of the spin system. Specific heat and magnetic susceptibility measurements on KErTe2 single crystals reveal no structural and magnetic transition down to 1.8 K. Most interestingly, the absorption spectrum shows that the charge gap of KErTe2 is roughly 0.93±0.35 eV, which is the smallest among all the reported members in the family. This immediately invokes the interest towards metallization even superconductivity using the compound.
|
Received: 21 April 2021
Revised: 04 June 2021
Accepted manuscript online: 18 July 2021
|
PACS:
|
75.10.Kt
|
(Quantum spin liquids, valence bond phases and related phenomena)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. U1932215 and 11774419), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100), and Postdoctoral Science Foundation of China (Grant No. 2020M670500), Q.M.Z. acknowledges the support from Users with Excellence Program of Hefei Science Center and High Magnetic Field Facility, CAS. |
Corresponding Authors:
Youguo Shi, Feng Jin
E-mail: ygshi@aphy.iphy.ac.cn;jinfeng@iphy.ac.cn
|
Cite this article:
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明) Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2 2021 Chin. Phys. B 30 107504
|
[1] Anderson P W 1973 Mater. Res. Bull. 8 153 [2] Kivelson S A, Rokhsar D S and Sethna J P 1987 Phys. Rev. B 35 8865 [3] Baskaran G and Anderson P W 1988 Phys. Rev. B 37 580 [4] Kotliar G and Liu J L 1988 Phys. Rev. B 38 5142 [5] Scalapino D J, Loh E and Hirsch J E 1987 Phys. Rev. B 35 6694 [6] Monthoux P and Pines D 1993 Phys. Rev. B 47 6069 [7] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [8] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204 [9] Han T H, Helton J S, Chu S Y, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 [10] Olariu A, Mendels P, Bert F, Duc F, Trombe J C, de Vries M A and Harrison A 2008 Phys. Rev. Lett. 100 087202 [11] Li Y S, Liao H J, Zhang Z, Li S Y, Jin F, Ling L S, Zhang L, Zou Y M, Pi L, Yang Z R, Wang J F, Wu Z H and Zhang Q M 2015 Sci. Rep. 5 16419 [12] Li Y S, Chen G, Tong W, Pi L, Liu J J, Yang Z R, Wang X Q and Zhang Q M 2015 Phys. Rev. Lett. 115 167203 [13] Li Y S, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J J, Tsirlin A A, Gegenwart P and Zhang Q M 2016 Phys. Rev. Lett. 117 097201 [14] Shen Y, Li Y D, Wo H L, Li Y S, Shen S D, Pan B Y, Wang Q S, Walker H C, Steffens P, Boehm M, Hao Y Q, Quintero-Castro D L, Harriger L W, Frontzek M D, Hao L J, Meng S Q, Zhang Q M, Chen G and Zhao J 2016 Nature 540 559 [15] Li Y S, Adroja D, Bewlwy R I, Voneshen D, Tsirlin A A, Gegenwart P and Zhang Q M 2017 Phys. Rev. Lett. 118 107202 [16] Li Y S, Adroja D, Voneshen D, Bewley R I, Zhang Q M, Tsirlin A A and Gegenwart P 2017 Nat. Commun. 8 15814 [17] Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stonr M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G and Nagler S E 2016 Nat. Mater. 15 733 [18] Banerjee A, Yan J Q, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R and Nagler S E 2017 Science 356 1055 [19] Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C and Nagler S E 2016 Phys. Rev. B 93 134423 [20] Ran K J, Wang J H, Wang W, Dong Z Y, Ren X, Bao S, Li S C, Ma Z, Gan Y, Zhang Y T, Park J T, Deng G C, Danilkin S, Yu S L, Li J X and Wen J S 2017 Phys. Rev. Lett. 118 107203 [21] Leahy I A, Pocs C A, Siegfried P E, Graf D, Do S H, Choi K Y, Normand B and Lee M 2017 Phys. Rev. Lett. 118 187203 [22] Shirata Y, Tanaka H, Matsuo A and Kindo K 2012 Phys. Rev. Lett. 108 057205 [23] Zorko A, Nellutla S, van Tol J, Brunel L C, Bert F, Duc F, Trombe J C, de Vries M A, Harrison A and Mendels P 2008 Phys. Rev. Lett. 101 026405 [24] Li Y D, Shen Y, Li Y S, Zhao J and Chen G 2018 Phys. Rev. B 97 125105 [25] Li Y D and Chen G 2017 Phys. Rev. B 96 075105 [26] Zhu Z Y, Maksimov P A, White S R and Chernyshev A L 2017 Phys. Rev. Lett. 119 157201 [27] Zhu Z Y, Maksimov P A, White S R and Chernyshev A L 2018 Phys. Rev. Lett. 120 207203 [28] Kimchi I, Nahum A and Senthil T 2018 Phys. Rev. X 8 031028 [29] Liu W W, Zhang Z, Ji J T, Liu Y X, Li J S, Wang X Q, Lie H C, Chen G and Zhang Q M 2018 Chin. Phys. Lett. 35 117501 [30] Baenitz M, Schlender P, Sichelschmidt J, Onykiienko Y A, Zangeneh Z, Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C, Yasuoka H, van den Brink J, Klauss H H, Inosov D S and Doert T 2018 Phys. Rev. B 98 220409 [31] Ding L, Manuel P, Bachus S, Gru? ler F, Gegenwart P, Singleton J, Johnson R D, Walker H C, Adroja D T, Hillier A D and Tsirlin A A 2019 Phys. Rev. B 100 144432 [32] Ranjith K M, Dmytriieva D, Khim S, Sichelschmidt J, Luther S, Ehlers D, Yasuoka H, Wosnitza J, Tsirlin A A, Kühne H and Baenitz M 2019 Phys. Rev. B 99 180401 [33] Bordelon M M, Kenney E, Liu C X, Hogan T, Posthuma L, Kavand M, Lyu Y, Sherwin M, Butch N P, Brown C, Graf M J, Balents L and Wilson S D 2019 Nat. Phys. 15 1058 [34] Zhang Z, Ma X L, Li J S, Wang G H, Adroja D T, Perring T P, Liu W W, Jin F, Ji J T, Wang Y M, Kamiya Y, Wang X Q, Ma J and Zhang Q M 2021 Phys. Rev. B 103 035144 [35] Xing J, Sanjeewa L D, Kim J, Meier W R, May A F, Zheng Q, Custelcean R, Stewart G R and Safat A S 2019 Phys. Rev. Mater. 3 114413 [36] The data come from https://atomly.net [37] Pustogow A, Li Y, Voloshenko I, Puphal P, Krellner C, Mazin I I, Dressel M and Valentí R 2017 Phys. Rev. B 96 241114 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|