Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107504    DOI: 10.1088/1674-1056/ac1574
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2

Weiwei Liu(刘维维)1,†, Dayu Yan(闫大禹)2,†, Zheng Zhang(张政)1, Jianting Ji(籍建葶)2, Youguo Shi(石友国)2,‡, Feng Jin(金峰)2,§, and Qingming Zhang(张清明)2,3
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid (QSL) candidates hosting a large number of members. In this paper we report the crystal growth and magnetic measurements of KErTe2, which is the first member of telluride in the family. Compared to its cousins of oxides, sulfides and selenides, KErTe2 retains the high symmetry of R3m and Er3+ ions still sit on a perfect triangular lattice. The separation between adjacent magnetic layers is expectedly increased, which further enhances the two dimensionality of the spin system. Specific heat and magnetic susceptibility measurements on KErTe2 single crystals reveal no structural and magnetic transition down to 1.8 K. Most interestingly, the absorption spectrum shows that the charge gap of KErTe2 is roughly 0.93±0.35 eV, which is the smallest among all the reported members in the family. This immediately invokes the interest towards metallization even superconductivity using the compound.
Keywords:  quantum spin liquids      exchange and superexchange interactions      magnetic anisotropy  
Received:  21 April 2021      Revised:  04 June 2021      Accepted manuscript online:  18 July 2021
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  75.30.Et (Exchange and superexchange interactions)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. U1932215 and 11774419), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100), and Postdoctoral Science Foundation of China (Grant No. 2020M670500), Q.M.Z. acknowledges the support from Users with Excellence Program of Hefei Science Center and High Magnetic Field Facility, CAS.
Corresponding Authors:  Youguo Shi, Feng Jin     E-mail:  ygshi@aphy.iphy.ac.cn;jinfeng@iphy.ac.cn

Cite this article: 

Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明) Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2 2021 Chin. Phys. B 30 107504

[1] Anderson P W 1973 Mater. Res. Bull. 8 153
[2] Kivelson S A, Rokhsar D S and Sethna J P 1987 Phys. Rev. B 35 8865
[3] Baskaran G and Anderson P W 1988 Phys. Rev. B 37 580
[4] Kotliar G and Liu J L 1988 Phys. Rev. B 38 5142
[5] Scalapino D J, Loh E and Hirsch J E 1987 Phys. Rev. B 35 6694
[6] Monthoux P and Pines D 1993 Phys. Rev. B 47 6069
[7] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[8] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[9] Han T H, Helton J S, Chu S Y, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[10] Olariu A, Mendels P, Bert F, Duc F, Trombe J C, de Vries M A and Harrison A 2008 Phys. Rev. Lett. 100 087202
[11] Li Y S, Liao H J, Zhang Z, Li S Y, Jin F, Ling L S, Zhang L, Zou Y M, Pi L, Yang Z R, Wang J F, Wu Z H and Zhang Q M 2015 Sci. Rep. 5 16419
[12] Li Y S, Chen G, Tong W, Pi L, Liu J J, Yang Z R, Wang X Q and Zhang Q M 2015 Phys. Rev. Lett. 115 167203
[13] Li Y S, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J J, Tsirlin A A, Gegenwart P and Zhang Q M 2016 Phys. Rev. Lett. 117 097201
[14] Shen Y, Li Y D, Wo H L, Li Y S, Shen S D, Pan B Y, Wang Q S, Walker H C, Steffens P, Boehm M, Hao Y Q, Quintero-Castro D L, Harriger L W, Frontzek M D, Hao L J, Meng S Q, Zhang Q M, Chen G and Zhao J 2016 Nature 540 559
[15] Li Y S, Adroja D, Bewlwy R I, Voneshen D, Tsirlin A A, Gegenwart P and Zhang Q M 2017 Phys. Rev. Lett. 118 107202
[16] Li Y S, Adroja D, Voneshen D, Bewley R I, Zhang Q M, Tsirlin A A and Gegenwart P 2017 Nat. Commun. 8 15814
[17] Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stonr M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G and Nagler S E 2016 Nat. Mater. 15 733
[18] Banerjee A, Yan J Q, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R and Nagler S E 2017 Science 356 1055
[19] Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C and Nagler S E 2016 Phys. Rev. B 93 134423
[20] Ran K J, Wang J H, Wang W, Dong Z Y, Ren X, Bao S, Li S C, Ma Z, Gan Y, Zhang Y T, Park J T, Deng G C, Danilkin S, Yu S L, Li J X and Wen J S 2017 Phys. Rev. Lett. 118 107203
[21] Leahy I A, Pocs C A, Siegfried P E, Graf D, Do S H, Choi K Y, Normand B and Lee M 2017 Phys. Rev. Lett. 118 187203
[22] Shirata Y, Tanaka H, Matsuo A and Kindo K 2012 Phys. Rev. Lett. 108 057205
[23] Zorko A, Nellutla S, van Tol J, Brunel L C, Bert F, Duc F, Trombe J C, de Vries M A, Harrison A and Mendels P 2008 Phys. Rev. Lett. 101 026405
[24] Li Y D, Shen Y, Li Y S, Zhao J and Chen G 2018 Phys. Rev. B 97 125105
[25] Li Y D and Chen G 2017 Phys. Rev. B 96 075105
[26] Zhu Z Y, Maksimov P A, White S R and Chernyshev A L 2017 Phys. Rev. Lett. 119 157201
[27] Zhu Z Y, Maksimov P A, White S R and Chernyshev A L 2018 Phys. Rev. Lett. 120 207203
[28] Kimchi I, Nahum A and Senthil T 2018 Phys. Rev. X 8 031028
[29] Liu W W, Zhang Z, Ji J T, Liu Y X, Li J S, Wang X Q, Lie H C, Chen G and Zhang Q M 2018 Chin. Phys. Lett. 35 117501
[30] Baenitz M, Schlender P, Sichelschmidt J, Onykiienko Y A, Zangeneh Z, Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C, Yasuoka H, van den Brink J, Klauss H H, Inosov D S and Doert T 2018 Phys. Rev. B 98 220409
[31] Ding L, Manuel P, Bachus S, Gru? ler F, Gegenwart P, Singleton J, Johnson R D, Walker H C, Adroja D T, Hillier A D and Tsirlin A A 2019 Phys. Rev. B 100 144432
[32] Ranjith K M, Dmytriieva D, Khim S, Sichelschmidt J, Luther S, Ehlers D, Yasuoka H, Wosnitza J, Tsirlin A A, Kühne H and Baenitz M 2019 Phys. Rev. B 99 180401
[33] Bordelon M M, Kenney E, Liu C X, Hogan T, Posthuma L, Kavand M, Lyu Y, Sherwin M, Butch N P, Brown C, Graf M J, Balents L and Wilson S D 2019 Nat. Phys. 15 1058
[34] Zhang Z, Ma X L, Li J S, Wang G H, Adroja D T, Perring T P, Liu W W, Jin F, Ji J T, Wang Y M, Kamiya Y, Wang X Q, Ma J and Zhang Q M 2021 Phys. Rev. B 103 035144
[35] Xing J, Sanjeewa L D, Kim J, Meier W R, May A F, Zheng Q, Custelcean R, Stewart G R and Safat A S 2019 Phys. Rev. Mater. 3 114413
[36] The data come from https://atomly.net
[37] Pustogow A, Li Y, Voloshenko I, Puphal P, Krellner C, Mazin I I, Dressel M and Valentí R 2017 Phys. Rev. B 96 241114
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[9] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[10] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[11] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[12] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[13] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[14] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[15] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
No Suggested Reading articles found!