Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 035201    DOI: 10.1088/1674-1056/ac2d18
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles

Fei-Fei Lu(路飞飞)1,2,3 and San-Qiu Liu(刘三秋)1,2,3,†
1 Jiangxi Province Key Laboratory of Fusion and Information Control, Department of Physics, Nanchang University, Nanchang 330031, China;
2 School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China;
3 NCU-ASIPP Magnetic Confinement Fusion Joint Laboratory, Institute of Fusion Energy and Plasma Application, Nanchang University, Nanchang 330031, China
Abstract  The dispersion relation and damping rate of kinetic Alfvén waves (KAWs) in a deuterium-tritium fusion plasma with slowing-down distributed $\alpha$-particles are investigated using the kinetic theory. The variations of wave frequency and damping rate with respect to the $\alpha$ concentration (${n_{\alpha}/n_{\rm e}}$) and perpendicular wave number (${k_ \bot }$) are studied from a numerical way. The results show that the fluctuation of $\alpha$ concentration slightly affects the frequency and damping rate of KAWs at low ${n_{\alpha}/n_{\rm e}}$. In addition, the frequency and the damping rate increase as the ${k_ \bot}$ and the background temperature ${T_{\rm e}}$ increase. For comparison, the calculations are performed also in the case of $\alpha$-particles following an equivalent Maxwellian distribution. For a given ${k_ \bot }$, the value of the frequency obtained in the slowing-down distribution case is smaller than that obtained in the Maxwellian distribution case. Conversely, the value of the damping rate obtained in the slowing-down distribution case is slightly larger than that obtained in the Maxwellian distribution case.
Keywords:  kinetic Alfvén wave      dispersion relation      deuterium-tritium fusion plasma  
Received:  19 May 2021      Revised:  20 August 2021      Accepted manuscript online:  06 October 2021
PACS:  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.65.Ff (Fokker-Planck and Vlasov equation)  
  25.70.Jj (Fusion and fusion-fission reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11863004 and 11763006), the Jiangxi Provincial Key Laboratory of Fusion and Information Control, China (Grant No. 20171BCD40005), and the Project of Scientific and Technological Innovation Base of Jiangxi Province, China (Grant No. 20203CCD46008).
Corresponding Authors:  San-Qiu Liu     E-mail:  sqlgroup@ncu.edu.cn

Cite this article: 

Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋) Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles 2022 Chin. Phys. B 31 035201

[1] Daniel J G, Adolfo F, John C D, Scott A B, Levon A A, Paul M B, Steven J S, Benoit L, Victoria N C, Michael O C, Yoshifumi S, William R P, Stephen A F, Robert E E, Robert J S, Christopher T R, Barbara L G, Craig J P, Roy B T and James L B 2017 Nat. Commun. 8 14719
[2] Sahraoui F, Goldstein M L, Robert P and Khotyaintsev Y V 2009 Phys. Rev. Lett. 102 231102
[3] Wong K L 1999 Plasma Phys. Control. Fusion 4 R1
[4] Fu G Y, Cheng C Z, Budny R, Chang Z, Darrow D S, Fredrickson E, Mazzucato E, Nazikian R and Zweben S 1995 Phys. Rev. Lett. 75 2336
[5] Ross D W, Chen G L and Mahajan S W 1982 Phys. Fluids 25 652
[6] Li Y M, Mahajan S M and Ross D W 1987 Phys. Fluids 30 2101
[7] Zhang T X and Li B 2004 Phys. Plasmas 11 2172
[8] Chu M S, Chan V S, Politzer P A, Brennan D P, Choi M, Lao L L, John H E and Turnbull A D 2006 Phys. Plasmas 13 114501
[9] Hasegawa A 1980 Nucl. Fusion 20 1158
[10] Hasegawa A and Chen L 1974 Phys. Rev. Lett. 32 454
[11] Weisen H, Appert K, Borg G G, Joye B, Knight A J, Lister J B and Vaclavik J 1989 Phys. Rev. Lett. 63 2476
[12] Bashir M F, Iqbal Z, Aslam I and Murtaza G 2010 Phys. Plasmas 17 102112
[13] Chen L and Wu D J 2011 Phys. Rev. E 84 046406
[14] Liu Y, Liu S Q, Dai B and Xue T L 2014 Phys. Plasmas 21 032125
[15] Liu Y, Wang Y F and Hu T P 2016 Phys. Plasmas 23 042103
[16] Liu S Q and Guo H M 2011 Acta Phys. Sin. 60 055203 (in Chinese)
[17] Belova E V, Gorelenkov N N, Fredrickson E D and Tritz K 2015 Phys. Rev. Lett. 115 015001
[18] Perkins F W, Barnes C W, Johnson D W, Scott S D, Zarnstorff M C, Bell M G, Bell R E, Bush C E, Grek B, Hill K W, Mansfield D K, Park H, Ramsey A T, Schivell J, Stratton B C and Synakowski E 1993 Phys. Fluids B 5 477
[19] Fonck R J, Cosby G, Durst R D, Paul S F, Bretz N, Scott S, Synakowski E and Taylor G 1993 Phys. Rev. Lett. 70 3736
[20] Mazzucato E and Nazikian R 1993 Phys. Rev. Lett. 71 1840
[21] Mazzucato E, Batha S H, Beer M, Bell M, Bell R E, Budny R V, Bush C, Hahm T S, Hammett G W, Levinton F M, Nazikian R, Park H, Rewoldt G, Schmidt G L, Synakowski E J, Tang W M, Taylor G and Zarnstorff M C 1996 Phys. Rev. Lett. 77 3145
[22] Kletzing C A, Bounds S R and Martin-Hiner J 2003 Phys. Rev. Lett. 90 035004
[23] Wilkie G J, Abel I G, Landreman M and Dorland W 2016 Phys. Plasmas 23 060703
[24] Angioni C and Peeters A G 2008 Phys. Plasmas 15 052307
[25] Heidbrink W W and Sadler G J 1995 Nucl. Fusion 35 243
[26] ITER Physics Expert Group on Confinement and Transport et al. 1999 Nucl. Fusion 39 2175
[27] Shimada M 2007 Nucl. Fusion 47 S1
[28] Li Y M, Mahajan S M and Ross D W 1987 Phys. Fluids 30 1466
[29] Ding N, Huang L and Qiu X M 1996 Phys. Plasmas 3 2293
[30] Lysak R L and Lotko W 1996 J. Geophys. Res. 101 5085
[31] Alexandrov A F, Bogdankevich L S and Rukhadze A A 1984 Principles of Plasma Electrodynamics (New York:Springer-Verlag)
[32] Li X Q 2003 Collapse Dynamics of Plasmons (Beijing:China Science and Technology Publishing) (in Chinese)
[33] Cramer N F 2001 The Physics of Alfven Wave (Berlin:Wiley-VCH)
[1] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[2] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[3] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[4] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[5] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[6] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) . Chin. Phys. B, 2012, 21(5): 055202.
[7] A k·p analytical model for valence band of biaxial strained Ge on (001) Si1-xGex
Wang Guan-Yu(王冠宇), Zhang He-Ming(张鹤鸣), Gao Xiang(高翔), Wang Bin(王斌), and Zhou ChunYu(周春宇) . Chin. Phys. B, 2012, 21(5): 057103.
[8] Dispersion relation of dust acoustic waves in metallic multi-walled carbon nanotubes
Ali Fathalian and Shahram Nikjo . Chin. Phys. B, 2012, 21(5): 057306.
[9] Dispersion relation of excitation mode in spin-polarized Fermi gas
Liu Ke(刘可) and Chen Ji-Sheng(陈继胜) . Chin. Phys. B, 2012, 21(3): 030309.
[10] Surface plasmon–polaritons on ultrathin metal films
Quan Jun(全军), Tian Ying(田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) . Chin. Phys. B, 2011, 20(4): 047201.
[11] The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity
Liu Bing-Can(刘炳灿), Yu Li(于丽), and Lu Zhi-Xin(逯志欣). Chin. Phys. B, 2011, 20(3): 037302.
[12] Effects of dust size distribution in ultracold quantum dusty plasmas
Qi Xue-Hong(祁学宏), Duan Wen-Shan(段文山), Chen Jian-Min(陈建敏), and Wang Shan-Jin(王善进) . Chin. Phys. B, 2011, 20(2): 025203.
[13] The dispersion relations for surface plasmon in a nonlinear–metal–nonlinear dielectric structure
Liu Bing-Can(刘炳灿), Yu Li(于丽), Lu Zhi-Xin(逯志欣), and Zhang Kai(张恺). Chin. Phys. B, 2010, 19(9): 097303.
[14] Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam
Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金). Chin. Phys. B, 2010, 19(12): 124101.
[15] Phonon dispersion relations and soft modes of 4? carbon nanotubes
Miao Ling(缪灵), Liu Hui-Jun(刘惠军), Hu Yi(胡懿), Zhou Xiang(周详), Hu Cheng-Zheng(胡承正), and Shi Jing(石兢). Chin. Phys. B, 2010, 19(1): 016301.
No Suggested Reading articles found!