Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 030502    DOI: 10.1088/1674-1056/ac1e12
GENERAL Prev   Next  

Inferring interactions of time-delayed dynamic networks by random state variable resetting

Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红)
School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Time delays exist widely in real systems, and time-delayed interactions can result in abundant dynamic behaviors and functions in dynamic networks. Inferring the time delays and interactions is challenging due to systematic nonlinearity, noises, a lack of information, and so on. Recently, Shi et al. proposed a random state variable resetting method to detect the interactions in a continuous-time dynamic network. By arbitrarily resetting the state variable of a driving node, the equivalent coupling functions of the driving node to any response node in the network can be reconstructed. In this paper, we introduce this method in time-delayed dynamic networks. To infer actual time delays, the nearest neighbor correlation (NNC) function for a given time delay is defined. The significant increments of NNC originate from the delayed effect. Based on the increments, the time delays can be reconstructed and the reconstruction errors depend on the sampling time interval. After time delays are accurately identified, the equivalent coupling functions can also be reconstructed. The numerical results have fully verified the validity of the theoretical analysis.
Keywords:  time delays      network reconstruction      random state variable resetting  
Received:  19 April 2021      Revised:  20 July 2021      Accepted manuscript online:  17 August 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  64.60.aq (Networks)  
  89.75.Fb (Structures and organization in complex systems)  
Corresponding Authors:  Shihong Wang     E-mail:  shwang@bupt.edu.cn

Cite this article: 

Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红) Inferring interactions of time-delayed dynamic networks by random state variable resetting 2022 Chin. Phys. B 31 030502

[1] Newman M E J 2003 SIAM Review 23 094206
[2] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175308
[3] Timme M and Casadiego J 2014 J. Phys. A:Math. Theor. 47 343001
[4] Zhang L S, Gu W F, Hu G and Mi Y Y 2014 Chin. Phys. B 23 108902
[5] Sun J C 2016 Chin. Phys. Lett. 33 100503
[6] Zhang M, Wang X J, Jin L and Liao Z H 2020 Chin. Phys. B 29 096401
[7] Han F, Wang Z J and Fan H 2015 Chin. Phys. Lett. 32 040502
[8] Rihan F A, Alsakaji H J and Rajivganthi C 2020 Adv. Differ. Equ. 502
[9] Qian Y, Gao H, Yao C, Cui X and Ma J 2018 Chin. Phys. B 27 108902
[10] Cao B, Gu H and Li Y 2021 Chin. Phys. B 11 050502
[11] Fan Y, Wang Z, Xia J and Shen H 2021 Chin. Phys. B 30 030202
[12] Garofalo M, Nieus T Massobrio P and Martinoia S 2009 Plos One e6482
[13] Zhou D, Xiao Y, Zhang Y, Xu Z and Cai D 2013 Phys. Rev. Lett. 111 054102
[14] Bianco-Martinez E, Rubido N, Antonopoulos C G and Baptista M S 2016 Chaos 26 043102
[15] Vicente R, Wibral M, Lindner M and Pipa G 2011 J. Comput. Neurosci. 30 45-67
[16] Zhang Z, Zheng Z, Niu H, Mi Y, Wu S and Hu G 2014 Phys. Rev. E 91 012814
[17] Ching Emily S C, Lai P Y and Leung C Y 2015 Phys. Rev. E 91 030801
[18] Chen Y, Zhang Z, Wang S and Hu G 2017 Sci. Rep. 7 44639
[19] Casadiego J and Timme M 2018 New J. Phys. 20 113031
[20] Wang W X, Lai Y C and Grebogi C 2016 Phys. Rep. 644
[21] Casadiego J, Nitzan M, Hallerberg S and Timme M 2017 Nat. Commun. 8 2192
[22] Chen Y, Zhang Z, Chen T, Wang S and Hu G 2017 Sci. Rep. 7 44639
[23] Zhang H F and Wang W X 2020 Acta Phy. Sin. 69 088906 (in Chinese)
[24] Zhang Z Y, Chen Y, Mi Y Y and Hu G 2020 Acta Phy. Sin. 50 010502 (in Chinese)
[25] Shi R, Hu G and Wang S 2019 Commun. Nonlinear Sci. Numer. Simul. 72 407-416
[26] Jiang W, Wang Z and Wang S 2021 Eur. Phys. J. B 94 138
[27] Zhang C, Chen Y and Hu G 2017 Phys. Lett. A 381 2502
[28] Shi R, Jiang W and Wang S 2020 Chaos 30 013138
[29] Levnajić Z and Pikovsky A 2011 Phys. Rev. Lett. 107 034101
[30] Bezruchko B P, Karavaev A S, Ponomarenko V I and Prokhorov M D 2001 Phys. Rev. E 64 056216
[31] Cimponeriu L, Rosenblum M and Pikovsky A 2004 Phys. Rev. E 70 046213
[32] Siefert M 2007 Phys. Rev. E 76 026215
[33] Ponomarenko V I and Prokhorov M D 2009 Phys. Rev. E 80 066206
[34] Zunino L, Soriano M C, Fischer I, Rosso O A and Mirasso C R 2010 Phys. Rev. E 82 046212
[35] Ma H, Leng S, Tao C, Ying X, Kurths J and Lai Y C 2017 Phys. Rev. E 96 012221
[36] Zhang Z, Chen Y, Mi Y and Hu G 2019 Phys. Rev. E 99 042311
[37] Shi R, Deng C and Wang S 2018 Europhys. Lett. 124 18002
[38] Deng C, Jiang W and Wang S 2021 Chaos 31 033146
[39] Lorenz E N 1963 J. Atmos. Sci. 20 130
[40] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500-544
[1] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[2] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[3] Effects of time delays in a mathematical bone model
Li-Fang Wang(王莉芳), Kang Qiu(仇康), Ya Jia(贾亚). Chin. Phys. B, 2017, 26(3): 030503.
[4] Bifurcation behavior and coexisting motions in a time-delayed power system
Ma Mei-Ling (马美玲), Min Fu-Hong (闵富红). Chin. Phys. B, 2015, 24(3): 030501.
[5] Consensus problems of first-order dynamic multi-agent systems with multiple time delays
Ji Liang-Hao (纪良浩), Liao Xiao-Feng (廖晓峰). Chin. Phys. B, 2013, 22(4): 040203.
[6] Synchronization of noise-perturbed optical systems with multiple time delays
Tang Mao-Ning(唐矛宁) . Chin. Phys. B, 2012, 21(2): 020509.
[7] Linear-control-based synchronisation of coexisting attractor networks with time delays
Song Yun-Zhong(宋运忠). Chin. Phys. B, 2010, 19(6): 060513.
No Suggested Reading articles found!