Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027503    DOI: 10.1088/1674-1056/ac2d1a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites

Shuangjiu Feng(冯双久)1,†, Jiangli Ni(倪江利)1, Feng Hu(胡锋)2, Xucai Kan(阚绪材)1, Qingrong Lv(吕庆荣)1, and Xiansong Liu(刘先松)1
1 Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics and Materials Science, Anhui University, Hefei 230601, China;
2 Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China
Abstract  The magnetic field provided by magnetized SrFe12O19 particles in FeSi/SrFe12O19 composites is used to replace the applied transverse magnetic field, which successfully reduces the magnetic loss of the composites with minor reduction of permeability. This magnetic loss reduction mainly comes from the decrease in hysteresis loss, while the eddy current loss is basically unaffected. The hysteresis loss reduction in magnetized composites is believed to be due to the decrease in domain wall displacement caused by the increase in the average magnetic domain size in a DC magnetic field. This is an effective method for reducing the magnetic loss of soft magnetic composites with wide application potential, and there is no problem of increasing the cost and the volume of the magnetic cores.
Keywords:  soft magnetic composites      FeSi      SrFe12O19      magnetic loss  
Received:  27 June 2021      Revised:  30 September 2021      Accepted manuscript online:  06 October 2021
PACS:  75.50.Bb (Fe and its alloys)  
  75.78.-n (Magnetization dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872004 and 51802002), the Key Program of the Education Department of Anhui Province, China (Grant No. KJ2019ZD03), and the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Specials Environments (Grant No. 6142905202112).
Corresponding Authors:  Shuangjiu Feng     E-mail:  fengsj@ahu.edu.cn

Cite this article: 

Shuangjiu Feng(冯双久), Jiangli Ni(倪江利), Feng Hu(胡锋), Xucai Kan(阚绪材), Qingrong Lv(吕庆荣), and Xiansong Liu(刘先松) Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites 2022 Chin. Phys. B 31 027503

[1] Shokrollahi H and Janghorban K 2007 J. Mater. Process. Technol. 189 1
[2] Sunday K T and Taheri M L 2017 Met. Powder. Rep. 72 425
[3] Perigo E A, Weidenfeller B, Kollar P and Fuezer 2018 Appl. Phys. Rev. 5 031301
[4] Silveyra J M, Ferrara E, Huber D L and Monson T C 2018 Science 362 418
[5] Li J X, Yu J, Li W C, Che S L, Zheng J, Qiao W L and Ying Y 2018 J. Magn. Magn. Mater. 454 103
[6] Wu C, Gao X W, Zhao G L, Jiang Y Z and Yan M 2018 J. Magn. Magn. Mater. 452 114
[7] Zhong X X, Liu Y L, Li J and Wang Y W 2012 J. Magn. Magn. Mater. 324 2631
[8] Streckova M, Medvecky L, Fuezer J, Kollar P, Bures R and Faberova M 2013 Mater. Lett. 101 37
[9] Fan X A, Wu Z Y, Li G Q, Wang J, Xiang Z D and Gan Z H 2016 Mater. Des. 89 1251
[10] Wu Z Y, Jiang Z, Fan X A, Zhou L J, Wang W L and Xu K 2018 J. Alloys Compd. 742 90
[11] Ma R, Xie Q, Huang J, Guo X T and Yan W J 2013 Chin. Phys. Lett. 30 127104
[12] Taghvaei A H, Shokrollahi H and Janghorban K 2009 J. Alloys Compd. 481 681
[13] Peng Y D, Yi Y, Li L Y, Ai H Y, Wang X X and Lu L L 2017 J. Magn. Magn. Mater. 428 148
[14] Luo Z G, Fan X A, Hu W T, Luo F, Wang J, Wu Z Y, Liu X, Li G Q and Li Y W 2020 J. Magn. Magn. Mater. 496 165937
[15] Slovensky P, Kollar P, Mei N X, Jakubcin M, Zelenakova A, Halama M, Wallinder I O and Hedberg Y S 2020 Appl. Surf. Sci. 531 147340
[16] Lauda M, Fuezer J, Kollar P, Streckova M, Bures R, Kovac J, Batkova M and Batko I 2016 J. Magn. Magn. Mater. 411 12
[17] Andalib P, Chen Y J and Harris V G 2018 IEEE Magn. Lett. 9 5100705
[18] Cao C C, Fan J W, Zhu L, Meng Y and Wang Y G 2017 Acta Phys. Sin. 66 167501 (in Chinese)
[19] Peng X, Peng K and Zhang W 2018 Mater. Res. Bull. 100 138
[20] Liu X, Wu P, Wang P, Wang T, Qiao L and Li F S 2020 Chin. Phys. B 29 077506
[21] Sunday K J and Taheri M L 2018 J. Magn. Magn. Mater. 463 1
[22] Wang Z, Liu X S, Kan X C, Zhu R W, Yang W, Wu Q Y and Zhou S Q 2019 Current Appl. Phys. 19 924
[23] Hu F, Ni J L, Feng S J, Kan X C, Zhu R W, Yang W, Yang Y J, Lv Q R and Liu X S 2020 J. Magn. Magn. Mater. 501 166480
[24] Zhang Y L, Fan X A, Hu W T, Luo Z G, Yang Z J, Li G Q and Li Y W 2020 J. Magn. Magn. Mater. 514 167295
[25] Wang M G, Zan Z, Deng N and Zhao Z K 2014 J. Magn. Magn. Mater. 361 166
[26] Luo Z G, Fan X A, Hu W T, Luo F, Li G Q, Li Y W, Liu X and Wang J 2019 Adv. Powder Technol. 30 538
[27] Feng S J, Ni J L, Hu F, Kan X C, Lv Q R, Yang Y J and Liu X S 2020 Appl. Phys. Lett. 117 122402
[28] Hu F, Ni J L, Feng S J, Kan X C, Yang Y J, Lv Q R and Liu X S 2020 J. Supercond. Nov. Magn. 33 2779
[29] Stoppels D 1996 J. Magn. Magn. Mater. 160 323
[30] Shokrollahi H and Janghorban K 2007 Mater. Sci. Eng. B 141 91
[1] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[2] β-FeSi2 as the bottom absorber of triple-junction thin-film solar cells:A numerical study
Yuan Ji-Ren (袁吉仁), Shen Hong-Lie (沈鸿烈), Zhou Lang (周浪), Huang Hai-Bin (黄海宾), Zhou Nai-Gen (周耐根), Deng Xin-Hua (邓新华), Yu Qi-Ming (余启名). Chin. Phys. B, 2014, 23(3): 038801.
[3] Simulation of near-infrared photodiode detectors based on β-FeSi2/4H-SiC heterojunction
Pu Hong-Bin (蒲红斌), He Xin (贺欣), Quan Ru-Dai (全汝岱), Cao Lin (曹琳), Chen Zhi-Ming (陈治明). Chin. Phys. B, 2013, 22(3): 037301.
[4] Resonant energy transfer from nanocrystal Si to β-FeSi2 in hybrid Si/β-FeSi2 film
He Jiu-Yang (何久洋), Zhang Qi-Zhen (张祺桢), Wu Xing-Long (吴兴龙), Chu Paul K. (朱剑豪). Chin. Phys. B, 2013, 22(10): 106804.
No Suggested Reading articles found!