Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090507    DOI: 10.1088/1674-1056/abea92
GENERAL Prev   Next  

Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays

Ning Li(李宁)1, Haiyi Sun(孙海义)2,†, Xin Jing(靖新)2, and Zhongtang Chen(陈仲堂)2
1 College of Sciences, Northeastern University, Shenyang, China;
2 College of Science, Shenyang JianZhu University, Shenyang, China
Abstract  The idea of network splitting according to time delay and weight is introduced. Based on the cyber physical systems (CPS), a class of multi-weighted complex transportation networks with multiple delays is modeled. The finite-time synchronization of the proposed complex transportation networks model is studied systematically. On the basis of the theory of stability, the technique of adaptive control, aperiodically intermittent control and finite-time control, the aperiodically intermittent adaptive finite-time synchronization controller is designed. The controller designed in this paper is beneficial for understanding the synchronization in multi-weighted complex transportation networks with multiple delays. In addition, the conditions for the existence of finite time synchronization have been discussed in detail. And the specific value of the settling finite time for synchronization is obtained. Moreover, the outer coupling configuration matrices are not required to be irreducible or symmetric. Finally, simulation results of the finite-time synchronization problem are given to illustrate the correctness of the results obtained.
Keywords:  complex transportation networks      adaptive finite-time synchronization      multiple delays and multi-weighted      aperiodically intermittent control  
Received:  24 December 2020      Revised:  30 January 2021      Accepted manuscript online:  01 March 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61803275), Liaoning Provincial Department of Education Scientific Research Fund Project, China (Grant Nos. lnjc202018 and lnzd202007), Liaoning BaiQianWan Talents Program (Grant No. 2017076), and Liaoning Province Doctor Starting Foundation (Grant No. 20170520283).
Corresponding Authors:  Haiyi Sun     E-mail:  shy_xx@163.com

Cite this article: 

Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂) Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays 2021 Chin. Phys. B 30 090507

[1] Lee E A 2008 IEEE Symposium on Object Oriented Real-time Distributed Computing, May 5-7, 2008, Orlando, FL, USA, p. 363
[2] Stankovic J A, Lee I, Mok A and Rajkumar R 2005 Computer 38 23
[3] Chen Z, Wu J, Xia Y and Zhang X 2018 IEEE Trans. Circuits Syst. Ⅱ: Exp. Briefs 65 115
[4] Mo H, Wagle N S and Zuba M 2009 Computer 42 88
[5] Zhao W Y, Ma Y C, Chen A H, Fu L and Zhang Y T 2019 Appl. Math. Comput. 349 81
[6] Tan F, Wu J J, Xia Y X and Tse C K 2014 Phys. Rev. E 89 062813
[7] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[8] Newman M E J 2003 SIAM Rev. 45 167
[9] Ma Y C, Jia X R and Liu D Y 2018 Appl. Math. Model 53 49
[10] Lü L, Li C R, Liu S, Wang Z Y, Tian J and Gu J J 2015 Nonlinear Dyn. 81 801
[11] Lü L, Xu Y Q, Chen L S and Li C R 2019 Physica A 521 121
[12] Lü L, Li C R, Li G, Bai S Y, Gao Y, Yan Z and Rong T T 2018 Physica A 503 355
[13] Deng X and Yang Y 2013 IEEE Trans. Emerg. Top Com. 1 98
[14] Chen G R, Wang X F and Li X 2015 Introduction to Complex Networks-Models, Structures and Dynamics, 2nd edn. (Beijing: Higher Education Press) p. 289
[15] Wang X F, Li X and Chen G R 2006 Complex network theory and its application (Beijing: Tsinghua university press) p. 194
[16] Erdös P and Rényi A 1960 Publicationes of the Mathematical Institute of the Hungarian Academy of Sciences 5 17
[17] Strogatz S H 2001 Nature 410 268
[18] Wang J Y, Xu C, Feng J W, Chen Z Q, Wang X F and Zhao Y 2016 IEEE Trans. Circuits Syst. I-Regul. Pap 62 2544
[19] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[20] Wang D, Che W W, Yu H and Li J Y 2018 Int. J. Control Autom. Syst. 16 782
[21] Zhang W L, Li C D, He X and Li H F 2018 Mod. Phys. Lett. B 32 1850002
[22] Li N, Sun H Y, Jing X and Zhang Q L 2013 IET Control Theory Appl. 7 1725
[23] Zhang Q J, Lu J A, Lv J H and Tse C K 2008 IEEE Trans. Circuits Syst. Ⅱ: Exp. Briefs 55 183
[24] Feng J W, Sun S H, Xu C, Zhao Y and Wang J Y 2012 Nonlinear Dyn 67 1623
[25] Yu W W, Chen G R and Lü J H 2009 Automatica 45 439
[26] Li N, Sun H, Li Z T and Zhang Q L 2018 IEEE Access 6 4742
[27] Liu M, Jiang H J and Hu C 2018 Neurocomputing 310 1
[28] Zheng M W, Li L X, Peng H P, Xiao J H, Yang Y X, Zhao H and Ren J F 2016 Eur. Phys. J. B 89 43
[29] Liu Y F, Ma Y C and Wang Y N 2018 Appl. Math. Comput. 320 341
[30] Liu Y F, Ma Y C and Wang Y N 2018 Int. J Robust and Nonlin. 28 381
[31] Chen C, Ding Z X, Li S and Wang L H 2020 Chin. Phys. B 29 040202
[32] Wang W, Zeng H B and Teo K L 2017 Chin. Phys. B 26 110503
[33] Wen G H, Yu W W, Yu X H and Lv J H 2017 J. Syst. Sci. Complex 30 46
[34] Gao Y, Li L X, Peng H P, Yang Y X and Zhang X H 2008 Acta Phys. Sin. 57 2801 (in Chinese)
[35] Sun H Y, Zhang Q L, Li N and Niu H 2010 Journal of Systems Engineering 25 798 (in Chinese)
[36] Wang J L, Wei P C, Wu H N, Huang T and Xu M 2019 IEEE Trans Syst Man Cybern 49 1357
[37] Sun H Y, Li N, Chen Z T and Jia X 2019 Proceedings of the 38th Chinese Control Conference July 27-30, 2019, Guangzhou, China, p. 5411
[38] Gong D W, Zhang H G, Huang B N and Ren Z Y 2013 Neural Comput & Applic 22 151
[39] Zhu Q X, Cao J D and Rakkiyappan R 2015 Nonlinear Dyn. 79 1085
[40] Cohen M A and Grossberg S 1983 IEEE Trans Syst Man Cybern 13 815
[41] Abdurahman A, Jiang H J and Teng Z D 2015 Neural Netw. 69 20
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!