|
|
Parameter estimation of continuous variable quantum key distribution system via artificial neural networks |
Hao Luo(罗浩)1,3, Yi-Jun Wang(王一军)1, Wei Ye(叶炜)2, Hai Zhong(钟海)2,†, Yi-Yu Mao(毛宜钰)1, and Ying Guo(郭迎)1,‡ |
1 School of Automation, Central South University, Changsha 410083, China; 2 School of Computer Science and Engineering, Central South University, Changsha 410083, China; 3 College of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China |
|
|
Abstract Continuous-variable quantum key distribution (CVQKD) allows legitimate parties to extract and exchange secret keys. However, the tradeoff between the secret key rate and the accuracy of parameter estimation still around the present CVQKD system. In this paper, we suggest an approach for parameter estimation of the CVQKD system via artificial neural networks (ANN), which can be merged in post-processing with less additional devices. The ANN-based training scheme, enables key prediction without exposing any raw key. Experimental results show that the error between the predicted values and the true ones is in a reasonable range. The CVQKD system can be improved in terms of the secret key rate and the parameter estimation, which involves less additional devices than the traditional CVQKD system.
|
Received: 26 July 2021
Revised: 11 September 2021
Accepted manuscript online: 18 September 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
87.85.dq
|
(Neural networks)
|
|
Corresponding Authors:
Hai Zhong, Ying Guo
E-mail: zhonghai@csu.edu.cn;yingguo@csu.edu.cn
|
Cite this article:
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎) Parameter estimation of continuous variable quantum key distribution system via artificial neural networks 2022 Chin. Phys. B 31 020306
|
[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers Systems, and Signal Processing, December 10-12, 1984, Bangalore, India, pp. 175-179 [2] Ruppert L, Usenko V C and Filip R 2014 Phys. Rev. A 90 062310 [3] Diamanti E and Leverrier A 2015 Entropy 17 6072 [4] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902 [5] Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C and Lam P K 2005 Phys. Rev. Lett. 95 180503 [6] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238 [7] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378 [8] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, TualleBrouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305 [9] Mao Y Y, Huang W T, Zhong H, Wang Y J, Qin H, Guo Y and Huang D 2020 New J. Phys. 22 083073 [10] Wu X D, Wang Y J, Guo Y, Zhong H and Huang D 2021 Phys. Rev. A 103 032604 [11] Liao Q, Xiao G, Zhong H and Guo Y 2020 New J. Phys. 22 083086 [12] Su X L, Wang W Z, Wang Y, Jia X J, Xie C D and Peng K C 2009 Europhys. Lett. 87 20005 [13] Su X L 2014 Chin. Sci. Bull. 59 1083 [14] M Navascués, Grosshans F and Acin A 2006 Phys. Rev. Lett. 97 190502 [15] Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502 [16] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503 [17] Leverrier A 2015 Phys. Rev. Lett. 114 070501 [18] Wang Y J, Mao Y Y, Huang W T, Huang D and Guo Y 2019 Opt. Express 27 25314 [19] Zeng G H 2010 Quantum private communication (Beijing:Higher Education Press and Springer Publishing Company) pp. 293-297 [20] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504 [21] Brunner H H, Comandar L C, Karinou F, Bettelli S, Hillerkuss D, Fung F, Wang D W, Mikroulis S, Yi Q, Kuschnerov M, Poppe A, Xie C S and Peev M 2017 19th International Conference on Transparent Optical Networks (ICTON), July 2-6, 2017, Girona, Spain, pp. 1-4 [22] Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D and Zeng G H 2018 Phys. Rev. A 97 052326 [23] Chai G, Cao Z W, Liu W Q, Wang S Y, Huang P and Zeng G H 2019 Phys. Rev. A 99 032326 [24] Guo Y, Zhou Z H, Wang X D, Wu X D, Zhang L and Huang D 2019 Int. J. Theor. Phys. 58 1613 [25] Wang X Y, Zhang Y C, Yu S and Guo H 2019 Quantum Inf. Process. 18 1 [26] Yang J, Xu B J, Peng X and Guo H 2012 Phys. Rev. A 85 052302 [27] Li Y, Huang P, Wang S Y, Wang T, Li D W and Zeng G H 2018 Phys. Lett. A 382 3253 [28] Garcia-Patron Sanchez Raul 2007 Quantum information with optical continuous variables:from bell tests to key distribution, Ph.D. Dissertation (Brussels:Université libre de Bruxelles) [29] Chai G, Li D W, Cao Z W, Zhang M H, Huang P and Zeng G H 2020 Quantum Engineering 2 e37 [30] Gyongyosi L and Imre S 2018 Appl. Sci. 8 87 [31] Jiang X Q, Yang S Y, Huang P and Zeng G H 2018 IEEE Photon. J. 10 1 [32] Gyongyosi L and Imre S 2014 Advances in Photonics of Quantum Computing, Memory, and Communication VII, February 19, 2014, San Francisco, USA, pp. 28-40 [33] Liu B, Zhao B K, Zou D J, Wu C Q, Yu W R and You I 2013 Information and Communication Technology-EurAsia Conference, March, 2013, Yogyakarta, Indonesia, pp. 453-458 [34] Li D W, Huang P, Zhou Y M, Li Y and Zeng G H 2018 IEEE Photon. J. 10 1 [35] McCulloch W S and Pitts W 1943 The bulletin of mathematical biophysics volume 5 p. 115 [36] Wang W Y and Hoi-Kwong Lo 2019 Phys. Rev. A 100 062334 [37] Zhou M G, Liu Z P, Liu W B, Li C L, Bai J L, Xue Y R, Fu Y, Yin H L and Chen Z B 2021 arXiv:2108.02578v1[quant-ph] [38] Beale H D, Demuth H B and Hagan M 1997 Neural network design (Boston:PWS Publishing Co.) Chapter 1 pp. 4-7 [39] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343 [40] Fossier S, Diamanti E, Debuisschert T, Tuallebrouri R and Grangier P 2009 J. Phys. B:At. Mol. Opt. Phys. 42 114014 [41] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504 [42] Thearle O, Assad S M and Symul T 2016 Phys. Rev. A 93 042343 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|