Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020501    DOI: 10.1088/1674-1056/ac2d22
GENERAL Prev   Next  

Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers

Tian-Yi Wang(王天一)1, Qin Zhou(周勤)2, and Wen-Jun Liu(刘文军)1,†
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Mathematical Modeling and Applied Computation(MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract  With the rapid development of communication technology, optical fiber communication has become a key research area in communications. When there are two signals in the optical fiber, the transmission of them can be abstracted as a high-order coupled nonlinear Schrödinger system. In this paper, by using the Hirota's method, we construct the bilinear forms, and study the analytical solution of three solitons in the case of focusing interactions. In addition, by adjusting different wave numbers for phase control, we further discuss the influence of wave numbers on soliton transmissions. It is verified that wave numbers k11, k21, k31, k22, and k32 can control the fusion and fission of solitons. The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.
Keywords:  soliton      Hirota's method      high-order coupled nonlinear Schrödinger system      soliton transmission  
Received:  31 August 2021      Revised:  28 September 2021      Accepted manuscript online:  06 October 2021
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875008, 12075034, 11975001, and 11975172), the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology (Grant No. SKL2018KF04), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2019XD-A09-3).
Corresponding Authors:  Wen-Jun Liu     E-mail:  jungliu@bupt.edu.cn

Cite this article: 

Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军) Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers 2022 Chin. Phys. B 31 020501

[1] Som B K, Gupta M R and Dasgupta B 1979 Phys. Lett. 72 111
[2] Agalarov A, Zhulego V and Gadzhimuradov T 2015 Phys. Rev. E 91 042909
[3] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1998 Rev. Mod. Phys. 71 463
[4] Wang L L and Liu W J 2020 Chin. Phys. B 29 070502
[5] Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501
[6] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[7] Zhao L C, Qin Y H, Wang W L and Yang Z Y 2020 Chin. Phys. Lett. 37 050502
[8] Wang B, Zhang Z and Li B 2020 Chin. Phys. Lett. 37 030501
[9] Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501
[10] Kang Z Z and Xia T C 2019 Chin. Phys. Lett. 36 110201
[11] Kivshar Y S and Agrawal G P 2003 Optical Solitons:From Fibers to Photonic Crystals (San Diego:Academic Press)
[12] Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81
[13] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[14] Malomed B A, Mihalache D and Wise F 2005 J. Opt. B 7 R53
[15] Agrawal G P 2005 Lect. Notes. Phys. 18 2005
[16] Kodama Y and Hasegawa A 1987 IEEE. J. Quantum Electron. 23 510
[17] Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford:Oxford University Press)
[18] Porsezian K and Nakkeeran K 1996 Phys. Rev. Lett. 76 3955
[19] Gedalin M, Scott T C and Band Y 1997 Phys. Rev. Lett. 78 448
[20] Liu C, Yang Z Y, Zhao L C and Yang W L 2015 Phys. Rev. E 91 022904
[21] Liu C, Yang Z Y, Zhao L C, Duan L, Yang G Y and Yang W L 2016 Phys. Rev. E 94 042221
[22] Wang L, Zhang J H, Liu C, Li M and Qi F H 2016 Phys. Rev. E 93 062217
[23] Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H and Guo R 2016 Phys. Rev. E 93 012214
[24] Zhang J H, Wang L and Liu C 2017 Proc. R. Soc. A 473 20160681
[25] Liu X Y, Zhang H X and Liu W J 2022 Appl. Math. Model. 102 305
[26] Kanna T and Lakshmanan M 2001 Phys. Rev. Lett. 86 5043
[27] Vijayajayanthi M, Kanna T and Lakshmanan M 2008 Phys. Rev. A 77 013820
[28] Chakravarty S, Sauer J R and Jenkins R B 1995 Opt. Lett. 20 136
[29] Zakharov V E and Schulman E I 1982 Physica D 4 270
[30] Radhakrishnan R and Lakshmanan M 1995 J. Phys. A 28 2683
[31] Jia T T, Gao Y T, Feng Y J, Hu L, Su J J, Li L Q and Ding C C 2019 Nonlinear Dyn. 96 229
[32] Meng G Q, Pan Y S, Tan H F and Xie X Y 2018 Comput. Math. Appl. 76 1535
[33] Xie X Y and Meng G Q 2019 Eur. Phys. J. Plus 134 359
[34] Xie X Y and Meng G Q 2018 Chaos, Solitons and Fractals 107 143
[35] Deng G F, Gao Y T and Gao X Y 2018 Wave Random Complex 28 468
[36] Liu D Y and Sun W R 2018 Appl. Math. Lett. 84 63
[37] Feng Y J, Gao Y T and Yu X 2018 Nonlinear Dyn. 91 29
[38] Ding C C, Gao Y T, Su J J, Deng G F and Jia S L 2018 Wave Random Complex 30 1
[39] Du Z, Tian B, Chai H P and Zhao X H 2020 Appl. Math. Lett. 102 106110
[40] Wang D S, Yin S, Tian Y and Liu Y 2014 Appl. Math. Comput. 229 296
[41] Guo R, Zhao H H and Wang Y 2016 NonlinearDyn. 83 2475
[42] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge:Cambridge University Press)
[43] Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J and Lei M 2017 Phys. Rev. E 96 042201
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[5] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[6] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[7] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[8] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[9] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[10] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[13] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[14] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[15] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
No Suggested Reading articles found!