Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100507    DOI: 10.1088/1674-1056/abf7ae
GENERAL Prev   Next  

Heterogeneous traffic flow modeling with drivers' timid and aggressive characteristics

Cong Zhai(翟聪)1,2, Weitiao Wu(巫威眺)1,†, and Songwen Luo(罗淞文)1
1 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China;
2 School of Transportation and Civil Engineering and Architecture, Foshan University, Foshan 528000, China
Abstract  The driver's characteristics (e.g., timid and aggressive) has been proven to greatly affect the traffic flow performance, whereas the underlying assumption in most of the existing studies is that all drivers are homogeneous. In the real traffic environment, the drivers are distinct due to a variety of factors such as personality characteristics. To better reflect the reality, we introduce the penetration rate to describe the degree of drivers' heterogeneity (i.e., timid and aggressive), and proceed to propose a generalized heterogeneous car-following model with different driver's characteristics. Through the linear stability analysis, the stability conditions of the proposed heterogeneous traffic flow model are obtained based on the perturbation method. The impacts of the penetration rate of drivers with low intensity, the average value and standard deviation of intensity parameters characterizing two types of drivers on the stability of traffic flow are analyzed by simulation. Results show that higher penetration of aggressive drivers contributes to traffic flow stability. The average value has a great impact on the stability of traffic flow, whereas the impact of the standard deviation is trivial.
Keywords:  heterogeneous car-following model      driver characteristic      penetration rate      stability  
Received:  10 January 2021      Revised:  07 April 2021      Accepted manuscript online:  14 April 2021
PACS:  05.60.-k (Transport processes)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
Fund: Project supported by the Regional Joint Fund for Foundation and Applied Research Fund of Guangdong Province, China (Grant No. 2019A1515111200), Youth Innovation Talents Funds of Colleges and Universities in Guangdong Province, China (Grant No. 2018KQNCX287), the Science and Technology Program of Guangzhou, China (Grant No. 201904010202), the National Science Foundation of China (Grant No. 72071079), and the Science and Technology Program of Guangdong Province, China (Grant No. 2020A1414010010).
Corresponding Authors:  Weitiao Wu     E-mail:  ctwtwu@scut.edu.cn

Cite this article: 

Cong Zhai(翟聪), Weitiao Wu(巫威眺), and Songwen Luo(罗淞文) Heterogeneous traffic flow modeling with drivers' timid and aggressive characteristics 2021 Chin. Phys. B 30 100507

[1] Wu W T, Liu R H, Jin W Z and Ma C X 2019 Transport. Res. Part B. 121 275
[2] Wu W T, Li P, Liu R H, Jin W Z, Yao B Z, Xie Y Q and Ma C X 2020 Transport. Res. Part E 142 102041
[3] Wu W T, Liu R H, Jin W Z and Ma C X 2019 Transport. Res. Part E. 130 61
[4] Wu W T, Lin Y, Liu R H, Li Y H, Zhang Y and Ma C X 2020 IEEE Trans. Intel. Transport. Systems 1
[5] Zhai C and Wu W T 2018 Nonlinear Dynam. 93 2185
[6] Zhai C, Liu W M, Tan F G, Huang L and Song M L 2018 Transport. Plan. Techn. 39 801
[7] Zhai C and Wu W T 2019 Int. J. Mod. Phys. C 30 1950073
[8] Ma G Y, Ma M H, Liang S D, Wang Y S and Zhang Y Z 2020 Commun. Nonlinear Sci. 85 105221
[9] Sun Y Q, Ge H X and Cheng R J 2019 Physica A 521 752
[10] Sun Y Q, Ge H X and Cheng R J 2019 Physica A 527 121426
[11] Hua W, Yue Y X, Wei Z L, Cheng J H and Wang W R 2020 Physica A 556 124777
[12] Yang L, Zheng J R, Cheng Y and Ran B 2019 Physica A 535 122277
[13] Li Q L, Wong S C, Min J, Tian S and Wang B H 2016 Physica A 456 128
[14] Gupta A K and Katiyar V K 2007 Transportmetrica 3 73
[15] Gupta A K and Sharma S 2012 Chin. Phys. B 21 015201
[16] Gupta A K and Sharma S 2010 Chin. Phys. B 19 110503
[17] Gupta A K and Dhiman I 2015 Nonlinear Dynam. 79 663
[18] Zhai C and Wu W T 2020 Commun. Theor. Phys. 72 105004
[19] Zhai C and Wu W T 2020 Eur. Phys. J. B 93 52
[20] Gupta A K and Redhu P 2014 Nonlinear Dynam. 76 1001
[21] Redhu P and Gupta A K 2015 Physica A 421 249
[22] Zhai C and Wu W T 2021 Commun. Nonlinear Sci. 95 105667
[23] Zhai C and Wu W T 2020 Int. J. Mod. Phys. C 31 2050089
[24] Gupta A K and Redhu P 2013 Physica A 392 5622
[25] Sharma S 2016 Nonlinear Dynam. 86 2093
[26] Sharma S 2015 Nonlinear Dynam. 81 991
[27] Sharma S 2015 Physica A 421 401
[28] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[29] Zhang J, Tang T Q and Yu S W 2018 Physica A 492 1831
[30] Jin Z Z, Li Z P, Cheng R J and Ge H X 2018 Physica A 507 278
[31] Li S K, Yang L X, Gao Z Y and Li K P 2014 ISA T. 53 1739
[32] Li Y F, Zhong Z Y, Zhang K B and Zheng T X 2019 Physica A 533 122022
[33] Guo L T, Zhao X M, Yu S W, Li X H and Shi Z K 2017 Physica A 471 436
[34] Zhang G, Zhao M, Sun D H, Liu W N and Li H M 2016 Physica A 442 532
[35] Li Y F, Sun D H, Liu W N, Zhang M, Zhao M, Liao X Y and Tang L 2011 Nonlinear Dynam. 66 15
[36] Yu L, Shi Z K and Li T 2014 Phys. Lett. A 378 348
[37] Ge H X, Meng X P, Cheng R J and Lo S M 2011 Physica A 390 3348
[38] Zhu H B and Dai S Q 2008 Physica A 387 3290
[39] Cao B G 2020 Physica A 539 122903
[40] Wang Y J, Song H and Cheng R J 2019 Physica A 515 440
[41] Liu D W, Shi Z K and Ai W H 2017 Commun. Nonlinear Sci. 47 139
[42] Peng G H and Cheng R J 2013 Physica A 392 3563
[43] Zhang J, Wang B, Li S B, Sun T and Wang T 2020 Physica A 540 123171
[44] Cheng J Z, Liu R H, Ngoduy D and Shi Z K 2016 Nonlinear Dynam. 85 2705
[45] Zhou T, Sun D H, Kang Y R, Li H M and Tian C 2014 Commun. Nonlinear Sci. 19 3820
[46] Tang T Q, He J, Yang S C and Shang H Y 2014 Physica A 413 583
[47] Peng G H, He H D and Lu W Z 2016 Physica A 442 197
[48] Cheng R J, Ge H X and Wang J F 2017 Phys. Lett. A 381 1302
[49] Sharma S 2015 Physica A 421 401
[50] Peng G H and Qing L 2016 Mod. Phy. Lett. B 30 1650351
[51] Wang Z H, Ge H X and Cheng R J 2020 Physica A 540 122988
[52] Tang T Q, Luo X F and Liu K 2016 Physica A 457 316
[53] Tang T Q, Li J G, Yang S C and Shang H Y 2015 Physica A 419 293
[54] Ge H X, Meng X P, Zhu H B and Li Z P 2014 Physica A 408 28
[55] Li Y F, Zhang L, Zheng H, He X Z, Peeta S, Zheng T X and Li Y G 2015 Nonlinear Dynam. 82 629
[56] Li Y F, Zhang L, Peeta S, Pan H G, Zheng T X, Li Y G and He X Z 2015 Nonlinear Dynam. 80 227
[57] Li Y F, Zhang L, Zhang B, Zheng T X, Feng H Z and Li Y G 2016 Nonlinear Dynam. 85 1901
[58] Wang P C, Yu G Z, Wu X K, Qin H M and Wang Y P 2018 Physica A 496 351
[59] Sun Y Q, Ge H X and Cheng R J 2019 Physica A 534 122377
[60] Li Y F, Zhang L, Peeta S, He X Z, Zheng T X and Li Y G 2016 Nonlinear Dynam. 85 2115
[61] Yu S W and Shi Z K 2015 Physica A 428 206
[62] Li Y F, Kang Y H, Yang B, Peeta S, Zhang L, Zheng T X and Li Y G 2016 Physica A 462 38
[63] Jin Y F and Hu H Y 2013 Commun. Nonlinear Sci. 18 1027
[64] Chen D, Sun D H, Zhao M, Yang L Y, Zhou T and Xie F 2018 Nonlinear Dynam. 92 1829
[65] Yang D, Qiu X P, Yu Dan, Sun R X and Pu Yun 2015 Physica A 424 62
[66] Li Q L, Wong S C, Jie M, Tian S and Wang B H 2016 Physica A 456 128
[67] Li Z P, Xu X, Xu S Z and Qian Y Q 2017 Commun. Nonlinear Sci. 42 132
[68] Sun F X, Wang J F, Cheng R J and Ge H X 2018 Phys. Lett. A 382 489
[69] Wang J F, Sun F X, Cheng R J and Ge H X 2018 Physica A 506 1113
[70] Li Z P, Li W Z, Xu S Z, Qian Y Q and Sun J 2015 Physica A 436 729
[71] Ren W L, Cheng R J and Ge H X 2021 Appl. Math. Comput. 401 126079
[72] Ren W L, Cheng R J and Ge H X 2021 Appl. Math. Model. 94 369
[73] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[74] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
No Suggested Reading articles found!