CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation |
Yue-Bo Liu(柳月波)1, Jun-Yu Shen(沈俊宇)1, Jie-Ying Xing(邢洁莹)1, Wan-Qing Yao(姚婉青)1, Hong-Hui Liu(刘红辉)1, Ya-Qiong Dai(戴雅琼)1, Long-Kun Yang(杨隆坤)1, Feng-Ge Wang(王风格)1, Yuan Ren(任远)1, Min-Jie Zhang(张敏杰)1, Zhi-Sheng Wu(吴志盛)1,2, Yang Liu(刘扬)1,2, and Bai-Jun Zhang(张佰君)1,2,† |
1 School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract We report an abnormal phenomenon that the source-drain current (ID) of AlGaN/GaN heterostructure devices decreases under visible light irradiation. When the incident light wavelength is 390 nm, the photon energy is less than the band gaps of GaN and AlGaN whereas it can causes an increase of ID. Based on the UV light irradiation, a decrease of ID can still be observed when turning on the visible light. We speculate that this abnormal phenomenon is related to the surface barrier height, the unionized donor-like surface states below the surface Fermi level and the ionized donor-like surface states above the surface Fermi level. For visible light, its photon energy is less than the surface barrier height of the AlGaN layer. The electrons bound in the donor-like surface states below the Fermi level are excited and trapped by the ionized donor-like surface states between the Fermi level and the conduction band of AlGaN. The electrons trapped in ionized donor-like surface states show a long relaxation time, and the newly ionized donor-like surface states below the surface Fermi level are filled with electrons from the two-dimensional electron gas (2DEG) channel at AlGaN/GaN interface, which causes the decrease of ID. For the UV light, when its photon energy is larger than the surface barrier height of the AlGaN layer, electrons in the donor-like surface states below the Fermi level are excited to the conduction band and then drift into the 2DEG channel quickly, which cause the increase of ID.
|
Received: 03 March 2021
Revised: 12 April 2021
Accepted manuscript online: 21 April 2021
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
61.80.Ba
|
(Ultraviolet, visible, and infrared radiation effects (including laser radiation))
|
|
Fund: Project supported by Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010132001 and 2019B010132003), the Joint Funding of the National Natural Science Foundation of China (NSFC) & the Macao Science and Technology Development Fund (FDCT) of China (Grant No. 62061160368), the National Key Research and Development Program of China (Grant Nos. 2016YFB0400105 and 2017YFB0403001), and the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University, China (Grant No. 20167612042080001). |
Corresponding Authors:
Bai-Jun Zhang
E-mail: zhbaij@mail.sysu.edu.cn
|
Cite this article:
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君) Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation 2021 Chin. Phys. B 30 117302
|
[1] Yoshida S, Ishii H, Li J, Wang D and Ichikawa M 2003 Solid-State Electron. 47 589 [2] Palacios T, Chakraborty A, Rajan S, Poblenz C, Keller S, DenBaars S P and Speck J S 2005 IEEE Electron Device Lett. 26 781 [3] Iwakami S, Machida O, Yanagihara M, Ehara T, Kaneko N, Goto H and Iwabuchi A 2007 Jpn. J. Appl. Phys. 46 L587 [4] Lee J W, Kumar V and Adesida I 2006 Jpn. J. Appl. Phys. 45 13 [5] Murphy M J, Chu K, Wu H, Yeo W, Schaff W J, Ambacher O, Eastman L F, Eustis T J, Silcox J, Dimitrov R and Stutzmann M 1999 Appl. Phys. Lett. 75 3653 [6] Eastman L F, Tilak V, Kaper V, Smart J, Thompson R, Green B, Shealy J R and Prunty T 2002 Proceedings of the International Workshop on Nitride Semiconductors, July 22-25, 2002, Aachen, Germany, p. 433 [7] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222 [8] Matys M, Stoklas R, Kuzmik J, Adamowicz B, Yatabe Z and Hashizume T 2016 J. Appl. Phys. 119 205304 [9] Chang L C, Yin S Y and Wu C H 2019 J. Phys. D: Appl. Phys. 52 195102 [10] Zhou X Y, Feng Z H, Wang Y G, Gu G D, Song X B and Cai S J 2015 Chin. Phys. B 24 048503 [11] Tan W S, Houston P A, Parbrook P J, Hill G and Airey R J 2002 J. Phys. D: Appl. Phys. 35 595 [12] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250 [13] Elhamri S, Saxler A, Cull D, Mitchel W, Elsass C, Smorchkova I, Heying B, Poblenz C, Fini P and Keller S 2001 Proceedings of the GaN Related Alloys - 2000. Symposium, November 27-December 1, 2000, Boston, MA, USA, p. G7.6.1-6 [14] Mizutani T, Ohno Y, Akita M, Kishimoto S and Maezawa K 2003 IEEE Trans. Electron Devices 50 2015 [15] Okada M, Takaki R, Kikuta D, Jin-Ping A O and Ohno Y 2006 Proceedings of the 6th Topical Workshop on Heterostructure Microelectronics, August, 2005, Awaji Isl, Japan, p. 1042 [16] Chang Y C, Li Y L, Lin T H and Sheu J K 2007 Jpn. J. Appl. Phys. 46 3382 [17] Chang Y C 2010 J. Appl. Phys. 107 033706 [18] Fagerlind M and Rorsman N 2012 J. Appl. Phys. 112 14511 [19] Liang Y N, Jia L F, He Z, Fan Z C, Zhang Y and Yang F H 2016 Appl. Phys. Lett. 109 182103 [20] Nagarajan V, Chen K M, Chen B Y, Huang G W, Chuang C W, Lin C J, Anandan D, Wu C H, Han P C, Singh S K, Luong T T and Chang E Y 2020 IEEE Trans. Device Mater. Reliab. 20 436 [21] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502 [22] Lee C T, Lin Y J and Liu D S 2001 Appl. Phys. Lett. 79 2573 [23] Bermudez V M, Wu C I and Kahn A 2001 J. Appl. Phys. 89 1991 [24] Ashok A, Vasileska D, Goodnick S M and Hartin O L 2009 IEEE Trans. Electron Devices 56 998 [25] Anwar A F M, Webster R T and Smith K V 2006 Appl. Phys. Lett. 88 203510 [26] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815 [27] Jogai B, Albrecht J D and Pan E 2003 J. Appl. Phys. 94 3984 [28] Smorchkova I P, Elsass C R, Ibbetson J P, Vetury R, Heying B, Fini P, Haus E, DenBaars S P, Speck J S and Mishra U K 1999 J. Appl. Phys. 86 4520 [29] He X G, Zhao D G and Jiang D S 2015 Chin. Phys. B 24 067301 [30] Heikman S, Keller S, Wu Y and Speck J S 2003 J. Appl. Phys. 93 10114 [31] Koley G and Spencer M G 2001 J. Appl. Phys. 90 337 [32] Gordon L, Miao M S, Chowdhury S, Higashiwaki M, Mishra U K and Walle C G V D 2010 J. Phys. D: Appl. Phys. 43 505501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|