Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117302    DOI: 10.1088/1674-1056/abfa07
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation

Yue-Bo Liu(柳月波)1, Jun-Yu Shen(沈俊宇)1, Jie-Ying Xing(邢洁莹)1, Wan-Qing Yao(姚婉青)1, Hong-Hui Liu(刘红辉)1, Ya-Qiong Dai(戴雅琼)1, Long-Kun Yang(杨隆坤)1, Feng-Ge Wang(王风格)1, Yuan Ren(任远)1, Min-Jie Zhang(张敏杰)1, Zhi-Sheng Wu(吴志盛)1,2, Yang Liu(刘扬)1,2, and Bai-Jun Zhang(张佰君)1,2,†
1 School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
Abstract  We report an abnormal phenomenon that the source-drain current (ID) of AlGaN/GaN heterostructure devices decreases under visible light irradiation. When the incident light wavelength is 390 nm, the photon energy is less than the band gaps of GaN and AlGaN whereas it can causes an increase of ID. Based on the UV light irradiation, a decrease of ID can still be observed when turning on the visible light. We speculate that this abnormal phenomenon is related to the surface barrier height, the unionized donor-like surface states below the surface Fermi level and the ionized donor-like surface states above the surface Fermi level. For visible light, its photon energy is less than the surface barrier height of the AlGaN layer. The electrons bound in the donor-like surface states below the Fermi level are excited and trapped by the ionized donor-like surface states between the Fermi level and the conduction band of AlGaN. The electrons trapped in ionized donor-like surface states show a long relaxation time, and the newly ionized donor-like surface states below the surface Fermi level are filled with electrons from the two-dimensional electron gas (2DEG) channel at AlGaN/GaN interface, which causes the decrease of ID. For the UV light, when its photon energy is larger than the surface barrier height of the AlGaN layer, electrons in the donor-like surface states below the Fermi level are excited to the conduction band and then drift into the 2DEG channel quickly, which cause the increase of ID.
Keywords:  AlGaN/GaN heterostructure      two-dimensional electron gas (2DEG)      surface states      irradiation  
Received:  03 March 2021      Revised:  12 April 2021      Accepted manuscript online:  21 April 2021
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.20.At (Surface states, band structure, electron density of states)  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
Fund: Project supported by Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010132001 and 2019B010132003), the Joint Funding of the National Natural Science Foundation of China (NSFC) & the Macao Science and Technology Development Fund (FDCT) of China (Grant No. 62061160368), the National Key Research and Development Program of China (Grant Nos. 2016YFB0400105 and 2017YFB0403001), and the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University, China (Grant No. 20167612042080001).
Corresponding Authors:  Bai-Jun Zhang     E-mail:  zhbaij@mail.sysu.edu.cn

Cite this article: 

Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君) Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation 2021 Chin. Phys. B 30 117302

[1] Yoshida S, Ishii H, Li J, Wang D and Ichikawa M 2003 Solid-State Electron. 47 589
[2] Palacios T, Chakraborty A, Rajan S, Poblenz C, Keller S, DenBaars S P and Speck J S 2005 IEEE Electron Device Lett. 26 781
[3] Iwakami S, Machida O, Yanagihara M, Ehara T, Kaneko N, Goto H and Iwabuchi A 2007 Jpn. J. Appl. Phys. 46 L587
[4] Lee J W, Kumar V and Adesida I 2006 Jpn. J. Appl. Phys. 45 13
[5] Murphy M J, Chu K, Wu H, Yeo W, Schaff W J, Ambacher O, Eastman L F, Eustis T J, Silcox J, Dimitrov R and Stutzmann M 1999 Appl. Phys. Lett. 75 3653
[6] Eastman L F, Tilak V, Kaper V, Smart J, Thompson R, Green B, Shealy J R and Prunty T 2002 Proceedings of the International Workshop on Nitride Semiconductors, July 22-25, 2002, Aachen, Germany, p. 433
[7] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[8] Matys M, Stoklas R, Kuzmik J, Adamowicz B, Yatabe Z and Hashizume T 2016 J. Appl. Phys. 119 205304
[9] Chang L C, Yin S Y and Wu C H 2019 J. Phys. D: Appl. Phys. 52 195102
[10] Zhou X Y, Feng Z H, Wang Y G, Gu G D, Song X B and Cai S J 2015 Chin. Phys. B 24 048503
[11] Tan W S, Houston P A, Parbrook P J, Hill G and Airey R J 2002 J. Phys. D: Appl. Phys. 35 595
[12] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250
[13] Elhamri S, Saxler A, Cull D, Mitchel W, Elsass C, Smorchkova I, Heying B, Poblenz C, Fini P and Keller S 2001 Proceedings of the GaN Related Alloys - 2000. Symposium, November 27-December 1, 2000, Boston, MA, USA, p. G7.6.1-6
[14] Mizutani T, Ohno Y, Akita M, Kishimoto S and Maezawa K 2003 IEEE Trans. Electron Devices 50 2015
[15] Okada M, Takaki R, Kikuta D, Jin-Ping A O and Ohno Y 2006 Proceedings of the 6th Topical Workshop on Heterostructure Microelectronics, August, 2005, Awaji Isl, Japan, p. 1042
[16] Chang Y C, Li Y L, Lin T H and Sheu J K 2007 Jpn. J. Appl. Phys. 46 3382
[17] Chang Y C 2010 J. Appl. Phys. 107 033706
[18] Fagerlind M and Rorsman N 2012 J. Appl. Phys. 112 14511
[19] Liang Y N, Jia L F, He Z, Fan Z C, Zhang Y and Yang F H 2016 Appl. Phys. Lett. 109 182103
[20] Nagarajan V, Chen K M, Chen B Y, Huang G W, Chuang C W, Lin C J, Anandan D, Wu C H, Han P C, Singh S K, Luong T T and Chang E Y 2020 IEEE Trans. Device Mater. Reliab. 20 436
[21] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[22] Lee C T, Lin Y J and Liu D S 2001 Appl. Phys. Lett. 79 2573
[23] Bermudez V M, Wu C I and Kahn A 2001 J. Appl. Phys. 89 1991
[24] Ashok A, Vasileska D, Goodnick S M and Hartin O L 2009 IEEE Trans. Electron Devices 56 998
[25] Anwar A F M, Webster R T and Smith K V 2006 Appl. Phys. Lett. 88 203510
[26] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[27] Jogai B, Albrecht J D and Pan E 2003 J. Appl. Phys. 94 3984
[28] Smorchkova I P, Elsass C R, Ibbetson J P, Vetury R, Heying B, Fini P, Haus E, DenBaars S P, Speck J S and Mishra U K 1999 J. Appl. Phys. 86 4520
[29] He X G, Zhao D G and Jiang D S 2015 Chin. Phys. B 24 067301
[30] Heikman S, Keller S, Wu Y and Speck J S 2003 J. Appl. Phys. 93 10114
[31] Koley G and Spencer M G 2001 J. Appl. Phys. 90 337
[32] Gordon L, Miao M S, Chowdhury S, Higashiwaki M, Mishra U K and Walle C G V D 2010 J. Phys. D: Appl. Phys. 43 505501
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[6] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[7] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[8] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[11] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[12] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[13] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[14] Laser-induced phase conversion of n-type SnSe2 to p-type SnSe
Qi Zheng(郑琦), Rong Yang(杨蓉), Kang Wu(吴康), Xiao Lin(林晓), Shixuan Du(杜世萱), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(4): 047306.
[15] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
No Suggested Reading articles found!