ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A 90° mixed-mode twisted nematic liquid-crystal-on-silicon with an insulating protrusion structure |
Wen-Juan Li(李文娟)1,2, Yu-Qiang Guo(郭玉强)3, Chi Zhang(张弛)1, Hong-Mei Ma(马红梅)2, and Yu-Bao Sun(孙玉宝)1,2,† |
1 School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China; 2 Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China; 3 School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China |
|
|
Abstract A 90° mixed-mode twisted nematic liquid-crystal-on-silicon (90°-MTN LCoS) with protrusion located between the adjacent pixels is proposed to reduce the effect of fringing field. The influence of the protrusion with different widths from 0.5 μm to 0.9 μm and different heights from 0.3 μm to 0.7 μm is investigated. The results demonstrate that the invalid pixel region width can be reduced by 31.5% via using the protrusion with the suitable width and height compared with no protrusion case, which provides a higher display quality, such as the higher reflectance and contrast ratio.
|
Received: 15 February 2021
Revised: 09 March 2021
Accepted manuscript online: 12 March 2021
|
PACS:
|
42.79.Kr
|
(Display devices, liquid-crystal devices)
|
|
42.70.Df
|
(Liquid crystals)
|
|
42.25.Gy
|
(Edge and boundary effects; reflection and refraction)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703701) and the National Natural Science Foundation of China (Grant No. 61475042). |
Corresponding Authors:
Yu-Bao Sun
E-mail: sun_yubao@163.com
|
Cite this article:
Wen-Juan Li(李文娟), Yu-Qiang Guo(郭玉强), Chi Zhang(张弛), Hong-Mei Ma(马红梅), and Yu-Bao Sun(孙玉宝) A 90° mixed-mode twisted nematic liquid-crystal-on-silicon with an insulating protrusion structure 2021 Chin. Phys. B 30 064210
|
[1] Boccardi F, Heath J R W, Lozano A, Marzetta T L and Popovski P 2014 IEEE Comm. Mag. 52 74 [2] Lee H S, Jang S, Noh J, Jeon H and Kim S 2017 SID Symp. Dig. Tech. Pap. 48 403 [3] Li R, Chu F, Dou H, Tian L L and Wang Q H 2019 SID Symp. Dig. Tech. Pap. 50 1800 [4] Won Y, Seo E J and Lim Y J 2019 SID Symp. Dig. Tech. Pap. 50 1802 [5] Vieri C, Lee G, Balram N, Jung, S H, Yang J Y, Yoon S Y and Kang I B 2018 J. Soc. Inf. Disp. 26 314 [6] Katayama T, Higashida S, Kanashima A, Hanaoka K and Yoshida H 2019 SID Symp. Dig. Tech. Pap. 49 671 [7] Shi L, Srivastava A K and Cheung A 2018 J. Soc. Inf. Disp. 26 325 [8] Lu L, Peng F L, Wang M F, McEldowney S and Silverstein B 2019 SID Symp. Dig. Tech. Pap. 50 826 [9] Chen C H 2015 Handbook of digital imaging (New York: John Wiley & Sons Ltd) pp. 1-20 [10] Li P K 2018 Information Display 34 12 [11] Tsai C W 2018 SID Symp. Dig. Tech. Pap. 49 218 [12] Zhu X and Wu S T 2004 J. Appl. Phys. 95 7660 [13] Cuypers D, De Smet H, De Smet J, Joshi P, Shang X and Van Calster A 2014 J. Soc. Inf. Disp. 22 457 [14] Hyman R M, Lorenz A and Wilkinson T D 2015 Liq. Cryst. 43 83 [15] Luo Z, Peng F, Chen H, Hu M and Wu S T 2015 Opt. Mater. Express 5 603 [16] Chen H W, Gou F W and Wu S T 2017 SID Symp. Dig. Tech. Pap. 48 377 [17] Chen R, Huang Y, Li J, Hu M and An Z 2018 Liq. Cryst. 46 309 [18] Xing Y F, Guo Z B and Li Q 2018 Liq. Cryst. 45 507 [19] Fan K H, Wu S T and Chen S H 2006 J. Disp. Technol. 1 304 [20] Apter B, Efron U and Bahat-Treidel E 2004 Appl. Opt. 43 11 [21] Fan Chiang K H, Zhu X, Wu S Tand Chen S 2005 SID Symp. Dig. Tech. Pap. 36 1290 [22] Zhang Y, Wang B, Chung D B, Colegrove J and Bos P J 2012 SID Symp. Dig. Tech. Pap. 36 1178 [23] Li Y W, Fan-Chiang K H, Wang C T, Chia T and Hung-Chien Y 2012 SID Symp. Dig. Tech. Pap. 43 914 [24] Nie Z, Day S E, Fernandez F A, Willman E and James R 2014 SID Symp. Dig. Tech. Pap. 45 1382 [25] Lu T X, Pivnenko M, Robertson B and Chu D P 2015 Appl. Opt. 54 5903 [26] Isomae Y, Shibata Y, Ishinabe T and Fujikake H 2016 SID Symp. Dig. Tech. Pap. 47 1670 [27] Isomae Y, Ishinabe T, Shibata Y and Fujikake H 2019 SID Symp. Dig. Tech. Pap. 50 66 [28] Cuypers D, Smet H D and Calster A V 2007 J. Soc. Inf. Disp. 15 775 [29] Vanbrabant P J M, Beeckman J, Neyts K, Willman E and Fernandez F A 2010 J. Appl. Phys. 108 083104 [30] Peng F L, Gou F W, Chen H W, Huang Y G and Wu S T 2016 J. Soc. Inf. Disp. 24 241 [31] Fan K H F, Wu S T and Chen S H 2002 Jpn. J. Appl. Phys. 41 4577 [32] Wu S T and Wu C S 1996 Appl. Phys. Lett. 68 1455 [33] Yang J P, Chen H M P, Huang Y, Chang Y C and Hsu R 2019 SID Symp. Dig. Tech. Pap. 50 993 [34] Baek J I, Shin J H, Oh M C, Kim J C and Yoon T H 2006 Appl. Phys. Lett. 88 161104 [35] Isomae Y, Ishinabe T, Shibata Y and Fujikake H 2019 J. Soc. Inf. Disp. 27 251 [36] Wu S T 2001 Reflective Liquid Crystal Displays (New York: John Wiley & Sons Inc) p. 427 [37] Gooch C H and Tarry H A 1975 J. Phys. D: Appl. Phys. 8 1575 [38] Chen Y, Peng F L, Wu S T, Mo L C and An Z W 2014 SID Symp. Dig. Tech. Pap. 44 898 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|