Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077801    DOI: 10.1088/1674-1056/26/7/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Accuracy design of ultra-low residual reflection coatingsfor laser optics

Huasong Liu(刘华松)1,2, Xiao Yang(杨霄)1, Lishuan Wang(王利栓)1,2, Hongfei Jiao(焦宏飞)3, Yiqin Ji(季一勤)1,2, Feng Zhang(张锋)1, D an Liu(刘丹丹)1, Chenghui Jiang(姜承慧)1, Yugang Jiang(姜玉刚)1, Deying Chen(陈德应)2
1 Tianjin Key Laboratory of Optical Thin Film, Tianjin Jinhang Technical Physics Institute, HIWING Technology Academy of CASIC, Tianjin 300308, China;
2 National Key Laboratory of Science and Technology on Tunable Laser, Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080, China;
3 Institute of Precision Optical Engineering, Tongji University, Shanghai 200092, China
Abstract  Refractive index inhomogeneity is one of the important characteristics of optical coating material, which is one of the key factors to produce loss to the ultra-low residual reflection coatings except using the refractive index inhomogeneity to obtain gradient-index coating. In the normal structure of antireflection coatings for center wavelength at 532 nm, the physical thicknesses of layer H and layer L are 22.18 nm and 118.86 nm, respectively. The residual reflectance caused by refractive index inhomogeneity (the degree of inhomogeneous is between –0.2 and 0.2) is about 200 ppm, and the minimum reflectivity wavelength is between 528.2 nm and 535.2 nm. A new numerical method adding the refractive index inhomogeneity to the spectra calculation was proposed to design the laser antireflection coatings, which can achieve the design of antireflection coatings with ppm residual reflection by adjusting physical thickness of the couple layers. When the degree of refractive index inhomogeneity of the layer H and layer L is –0.08 and 0.05 respectively, the residual reflectance increase from zero to 0.0769% at 532 nm. According to the above accuracy numerical method, if layer H physical thickness increases by 1.30 nm and layer L decrease by 4.50 nm, residual reflectance of thin film will achieve to 2.06 ppm. When the degree of refractive index inhomogeneity of the layer H and layer L is 0.08 and –0.05 respectively, the residual reflectance increase from zero to 0.0784% at 532 nm. The residual reflectance of designed thin film can be reduced to 0.8 ppm by decreasing the layer H of 1.55 nm while increasing the layer L of 4.94 nm.
Keywords:  ultra-low residual reflectance      antireflection coatings for laser optics      refractive index inhomogeneity      accuracy design  
Received:  29 September 2016      Revised:  05 April 2017      Accepted manuscript online: 
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  02.60.Cb (Numerical simulation; solution of equations)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61405145 and 61235011),the Natural Science Foundation of Tianjin,China (Grant No.15JCZDJC31900),and the China Postdoctoral Science Foundation (Grant Nos.2015T80115 and 2014M560104).
Corresponding Authors:  Huasong Liu     E-mail:  liuhuasong@hotmail.com

Cite this article: 

Huasong Liu(刘华松), Xiao Yang(杨霄), Lishuan Wang(王利栓), Hongfei Jiao(焦宏飞), Yiqin Ji(季一勤), Feng Zhang(张锋), D an Liu(刘丹丹), Chenghui Jiang(姜承慧), Yugang Jiang(姜玉刚), Deying Chen(陈德应) Accuracy design of ultra-low residual reflection coatingsfor laser optics 2017 Chin. Phys. B 26 077801

[1] Lin Y C and Lu W Q 1990 The Principle of Optical Thin Film (Beijing:National Defense Industry Press) pp. 240–253 (in Chinese)
[2] Harry G M, Armandula H, Black E, Crooks D R, Cagnoli G, Fejer M M, Hough J, Penn S D, Rowan S, Route R and Sneddon P 2004 Proc. SPIE 5527 33
[3] Anderson N and Lalezari R 2012 Laser Focus World 48 48
[4] Ristau D and Grob T 2005 Proc. SPIE 5963 596313
[5] Otani M, Fujimura H, Ishikura J and Yoshida K 2004 Jpn. J. Appl. Phys. 43 6350
[6] Schröder S, Herffurth T, Duparré A and Harvey J E 2011 Proc. SPIE 8169 81690R
[7] Pan Y, Wu Z and Hang L 2010 Appl. Surf. Sci. 256 3503
[8] Lu J T, Cheng X B, Shen Z X, Jiao H F, Zhang J L and Ma B 2011 Acta Phys. Sin. 60 47802 (in Chinese)
[9] Jacobsson J R 1993 Proc. SPIE 2046 2
[10] Jacobsson R 1975 Phys. Thin Films 8 51
[11] Tikhonravov A, Trubetskov M, Sullivan B T and Dobrowolski J A 1997 Appl. Optics 36 7188
[12] Dobrowolski J A, Poitras D, Ma P, Vakil H and Acree M 2002 Appl. Optics 41 3075
[13] Poitras D and Dobrowolski J A 2004 Appl. Optics 43 1286
[14] Jiao H F, Cheng X B, Bao G H, Han J, Zhang J L, Wang Z S, Trubetskov M and Tikhonravov A 2014 Appl. Optics 53 A56
[15] Tikhonravov A and Trubetskov M 2013 OSA Tech. Digest (Online) paper TD. 6
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[4] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[5] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[6] Epitaxial Bi2Sr2CuOy thin films as p-type transparent conductors
Chen Zhou(周臣), Wang-Ping Cheng(程王平), Yuan-Di He(何媛娣), Cheng Shao(邵成), Ling Hu(胡令), Ren-Huai Wei(魏仁怀), Jing-Gang Qin(秦经刚), Wen-Hai Song(宋文海), Xue-Bin Zhu(朱雪斌), Chuan-Bing Cai(蔡传兵), and Yu-Ping Sun(孙玉平). Chin. Phys. B, 2022, 31(10): 107305.
[7] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[8] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[9] Radiation resistance property of barium gallo-germanate glass doped by Nb2O5
Gui-Rong Liu(刘桂榕), Xiao-Dong Chen(陈晓东), Hong-Gang Liu(刘红刚), Yan Wang(王琰), Min Sun(孙敏), Na Yan(闫娜), Qi Qian(钱奇), and Zhong-Min Yang(杨中民). Chin. Phys. B, 2022, 31(2): 027801.
[10] Phase-shift interferometry measured transmission matrix of turbid medium: Three-step phase-shifting interference better than four-step one
Xi-Cheng Zhang(张熙程), Zuo-Gang Yang(杨佐刚), Long-Jie Fang(方龙杰), Jing-Lei Du(杜惊雷), Zhi-You Zhang(张志友), and Fu-Hua Gao(高福华). Chin. Phys. B, 2021, 30(10): 104202.
[11] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[12] Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏, and Yun-Hai Zhang(张运海). Chin. Phys. B, 2021, 30(3): 037301.
[13] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[14] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
[15] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
No Suggested Reading articles found!