Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 126301    DOI: 10.1088/1674-1056/abbbff
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic structure and optical properties of Ge-and F-doped α -Ga2O3: First-principles investigations

Ti-Kang Shu(束体康), Rui-Xia Miao(苗瑞霞)†, San-Dong Guo(郭三栋), Shao-Qing Wang(王少青), Chen-He Zhao(赵晨鹤), and Xue-Lan Zhang(张雪兰)
School of Electronic Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
Abstract  The prospect of α -Ga2O3 in optical and electrical devices application is fascinating. In order to obtain better performance, Ge and F elements with similar electronegativity and atomic size are selected as dopants. Based on density functional theory (DFT), we systematically research the electronic structure and optical properties of doped α -Ga2O3 by GGA+U calculation method. The results show that Ge atoms and F atoms are effective n-type dopants. For Ge-doped α -Ga2O3, it is probably obtained under O-poor conditions. However, for F-doped α -Ga2O3, it is probably obtained under O-rich conditions. The doping system of F element is more stable due to the lower formation energy. In this investigation, it is found that two kinds of doping can reduce the α -Ga2O3 band gap and improve the conductivity. What is more, it is observed that the absorption edge after doping has a blue shift and causes certain absorption effect on the visible region. Through the whole scale of comparison, Ge doping is more suitable for the application of transmittance materials, yet F doping is more appropriate for the application of deep ultraviolet devices. We expect that our research can provide guidance and reference for preparation of α -Ga2O3 thin films and photoelectric devices.
Keywords:  DFT      GGA+U calculation method      α -Ga2O3      doping  
Received:  01 August 2020      Revised:  07 September 2020      Accepted manuscript online:  28 September 2020
PACS:  63.20.dk (First-principles theory)  
  73.20.At (Surface states, band structure, electron density of states)  
  74.20.Pq (Electronic structure calculations)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51302215) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2018JQ6084 and 2019JQ-860).
Corresponding Authors:  Corresponding author. E-mail: miao9508301@xupt.edu.cn   

Cite this article: 

Ti-Kang Shu(束体康), Rui-Xia Miao(苗瑞霞), San-Dong Guo(郭三栋), Shao-Qing Wang(王少青), Chen-He Zhao(赵晨鹤), and Xue-Lan Zhang(张雪兰) Electronic structure and optical properties of Ge-and F-doped α -Ga2O3: First-principles investigations 2020 Chin. Phys. B 29 126301

[1] Kyrtsos A, Matsubara M and Bellotti E Phys. Rev. B 95 245202 DOI: 10.1103/PhysRevB.95.2452022017
[2] Cui Z, Ke X Z, Li E L and Liu T Mater. Design 96 409 DOI: 2016
[3] Zhu Z W, Zheng J Y, Wang L, Xiong B, Sun C Z, Hao Z B, Luo Y, Han Y J, Wang J and Li H T Chin. Phys. Lett. 34 030303 DOI: 10.1088/0256-307X/34/3/0303032017
[4] Zhang Y M, Wang J F, Cai D M, Ren G Q, Xu Y, Wang M Y, Hu X J and Xu K Chin. Phys. B 29 026104 DOI: 10.1088/1674-1056/ab65b92020
[5] Huang H L, Tang X Y, Guo H, Zhang Y M, Wang Y T and Zhang Y M Chin. Phys. B 28 010701 DOI: 10.1088/1674-1056/28/1/0107012019
[6] Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A Appl. Phys. Rev. 5 011301 DOI: 10.1063/1.50069412018
[7] Pearton S J, Ren F, Tadjer M and Kim J J. Appl. Phys. 124 220901 DOI: 10.1063/1.50628412018
[8] Galazka Z Semicond. Sci. Technol. 33 113001 DOI: 10.1088/1361-6641/aadf782018
[9] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H Appl. Phys. Lett. 105 023507 DOI: 10.1063/1.48905242014
[10] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H J. Alloys Compd. 660 136 DOI: 10.1016/j.jallcom.2015.11.1452016
[11] Nakagomi S, Sai T and Kokubun Y Sensors and Actuators B-Chemical 187 413 DOI: 10.1016/j.snb.2013.01.0202013
[12] Mazeina L, Perkins F K, Bermudez V M, Arnold S P and Prokes S M Langmuir: the ACS Journal of Surfaces and Colloids 26 13722 DOI: 10.1021/la101760k2010
[13] Mi W, Li Z, Luan C N, Xiao H D, Zhao C S and Ma J Ceram. Int. 41 2572 DOI: 10.1016/j.ceramint.2014.11.0042015
[14] Zatsepin D A, Boukhvalov D W, Zatsepin A F, Kuznetsova Y A, Gogova D, Shur V Y and Esin A A Superlattices and Microstructures 120 90 DOI: 10.1016/j.spmi.2018.05.0272018
[15] Zacherle T, Schmidt P C and Martin M Phys. Rev. B 87 235206 DOI: 10.1103/PhysRevB.87.2352062013
[16] Dong L P, Jia R X, Xin B, Peng B and Zhang Y M Sci. Rep. 7 40160 DOI: 10.1038/srep401602017
[17] Huang H L, Tang X Y, Guo H, Zhang Y M, Wang Y T and Zhang Y M Chin. Phys. B 28 010701 DOI: 10.1088/1674-1056/28/1/0107012019
[18] Cora I, Mezzadri F, Boschi F, Bosi M, Caplovicova M, Calestani G, Dodony I, Pecz B and Fornari R Crystengcomm 19 1509 DOI: 10.1039/C7CE00123A2017
[19] Pavesi M, Fabbri F, Boschi F, Piacentini G, Baraldi A, Bosi M, Gombia E, Parisini A and Fornari R Mater. Chem. Phys. 205 502 DOI: 10.1016/j.matchemphys.2017.11.0232018
[20] Fornari R, Pavesi M, Montedoro V, Klimm D, Mezzadri F, Cora I, Pecz B, Boschi F, Parisini A, Baraldi A, Ferrari C, Gombia E and Bosi M Acta Materialia 140 411 DOI: 10.1016/j.actamat.2017.08.0622017
[21] Guo S D and Du H M Eur. Phys. J. B 93 7 DOI: 10.1140/epjb/e2019-100516-62020
[22] Oshima Y, Villora E G, Matsushita Y, Yamamoto S and Shimamura K J. Appl. Phys. 118 085301 DOI: 10.1063/1.49294172015
[23] Sun H D, Li K H, Castanedo C G T, Okur S, Tompa G S, Salagaj T, Lopati S, Genovese A and Li X H Crystal Growth & Design 18 2370 DOI: 10.1021/acs.cgd.7b017912018
[24] Furthmuller J and Bechstedt F Phys. Rev. B 93 115204 DOI: 10.1103/PhysRevB.93.1152042016
[25] H.Y. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rerat Phys. Rev. B 74 195123 DOI: 10.1103/PhysRevB.74.1951232006
[26] Dong L P, Yu J G, Zhang Y M and Jia R X Comput. Mater. Sci. 156 273 DOI: 10.1016/j.commatsci.2018.10.0032019
[27] Oshima Y, Vllora E G and Shimamura K Appl. Phys. Express 8 055501 DOI: 10.7567/APEX.8.0555012015
[28] Chikoidze E, von Bardeleben H J, Akaiwa K, Shigematsu E, Kaneko K, Fujita S and Dumont Y J. Appl. Phys. 120 025109 DOI: 10.1063/1.49588602016
[29] Guo D Y, Zhao X L, Zhi Y S, Cui W, Huang Y Q, An Y H, Li P G, Wu Z P and Tang W H Mater. Lett. 164 364 DOI: 10.1016/j.matlet.2015.11.0012016
[30] Qiao G, Cai Q, Ma T C, Wang J, Chen X H, Xu Y, Shao Z G, Ye J D and Chen D J Acs Appl. Mater. Interfaces 11 40283 DOI: 10.1021/acsami.9b138632019
[31] Kaneko K, Fujita S and Hitora T Jpn. J. Appl. Phys. 57 02 DOI: 2018
[32] Kobayashi T, Gake T, Kumagai Y, Oba F and Matsushita Y Appl. Phys. Express 12 091001 DOI: 10.7567/1882-0786/ab37632019
[33] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K and Payne M C Zeitschrift Fur Kristallographie Crystalline Materials 220 567 DOI: 2005
[34] Perdew J P, Burke K and Ernzerhof M Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.38651996
[35] Dang J N, Zheng S W, Chen L and Zheng T Chin. Phys. B 28 016301 DOI: 10.1088/1674-1056/28/1/0163012019
[36] Monkhorst H J and Pack J D Phys. Rev. B 13 5188 DOI: 10.1103/PhysRevB.13.51881976
[37] Marezio M and Remeika J J. Chem. Phys. 46 1862 DOI: 10.1063/1.18409451967
[38] Zheng T, Wang Q, Dang J N, He W, Wang L Y and Zheng S W Comput. Mater. Sci. 174 109505 DOI: 10.1016/j.commatsci.2019.1095052020
[39] Segura A, Artus L, Cusco R, Goldhahn R and Feneberg M Phys. Rev. Mater. 1 024604 DOI: 10.1103/PhysRevMater.1.0246042017
[40] Dai J F, Suo Z Q, Li Z P and Gao S S Results in Physics 15 102649 DOI: 10.1016/j.rinp.2019.1026492019
[41] Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X and Huang Y N Acta Phys. Sin. 68 017401 (in Chinese) DOI: 10.7498/aps.68.201815312019
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[5] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[6] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[7] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[8] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[9] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[12] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[13] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
No Suggested Reading articles found!