CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters |
Yuan-Yuan Wang(王园园)1, Jian-Hua Ding(丁建华)1, Wen-Bo Liu(柳文波)2, Shao-Song Huang(黄绍松)1, Xiao-Qin Ke(柯小琴)3, Yun-Zhi Wang(王云志)3,4, Chi Zhang(张弛)5, Ji-Jun Zhao(赵纪军)1 |
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), Dalian University of Technology, Dalian 116024, China; 2 Department of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; 3 Center of Microstructure Science, Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; 4 Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210, USA; 5 Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract A series of material parameters are derived from atomistic simulations and implemented into a phase field (PF) model to simulate void evolution in body-centered cubic (bcc) iron subjected to different irradiation doses at different temperatures. The simulation results show good agreement with experimental observations–the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial.
|
Received: 10 November 2016
Revised: 29 November 2016
Accepted manuscript online:
|
PACS:
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
61.72.Qq
|
(Microscopic defects (voids, inclusions, etc.))
|
|
Fund: Project supported by the National Magnetic Confinement Fusion Energy Research Project of China (Grant No. 2015GB118001), the Fundamental Research Funds for the Central Universities, China (Grant No. DUT16RC(3)052), the National Basic Research Program of China (Grant No. 2012CB619402), and the NETL Project (Grant No. DE-FE0027776). |
Corresponding Authors:
Ji-Jun Zhao
E-mail: zhaojj@dlut.edu.cn
|
Cite this article:
Yuan-Yuan Wang(王园园), Jian-Hua Ding(丁建华), Wen-Bo Liu(柳文波), Shao-Song Huang(黄绍松), Xiao-Qin Ke(柯小琴), Yun-Zhi Wang(王云志), Chi Zhang(张弛), Ji-Jun Zhao(赵纪军) Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters 2017 Chin. Phys. B 26 026102
|
[1] |
Raj B and Vijayalakshmi M 2012 Comprehensive Nuclear Materials (Elsevier: Oxford) pp. 97-121
|
[2] |
Baluc N, Gelles D S, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Van der Schaaf B and Yu J 2007 J. Nucl. Mater. Part A 367-370 33
|
[3] |
Li Y F, Shen T L, Gao X, Yao C F, Wei K F, Sun J R, Li B S, Zhu Y B, Pang L L, Cui M H, Chang H L, Wang J, Zhu H P, Hu B T and Wang Z G 2013 Chin. Phys. Lett. 30 126101
|
[4] |
Little E A and Stow D A 1979 J. Nucl. Mater. 87 25
|
[5] |
Singh B N, Horsewell A and Toft P 1999 J. Nucl. Mater. 271-272 97
|
[6] |
Hernández-Mayoral M and Gómez-Briceño D 2010 J. Nucl. Mater. 399 146
|
[7] |
Zhang C, Fu J, Li R, Zhang P, Zhao J and Dong C 2014 J. Nucl. Mater. 455 354
|
[8] |
Fu C C, Torre J D, Willaime F, Bocquet J L and Barbu A 2005 Nat. Mater. 4 68
|
[9] |
Harkness S D and Li C Y 1971 Metall. Trans. 2 1457
|
[10] |
Konobeev Y V, Dvoriashin A M, Porollo S I and Garner F A 2006 J. Nucl. Mater. 355 124
|
[11] |
Yu G, Ma Y, Cai J and Lu D G 2012 Chin. Phys. B 21 036101
|
[12] |
Yu H C and Lu W 2005 Acta Mater. 53 1799
|
[13] |
Srujan R, Anter E A, Paul M and Dieter W 2009 Model. Simul. Mater. Sci. Eng. 17 064002
|
[14] |
Paul C M, Srujan R, Anter E A, Michael T and Dieter W 2009 Model. Simul. Mater. Sci. Eng. 17 064003
|
[15] |
Millett P C, El-Azab A, Rokkam S, Tonks M and Wolf D 2011 Comput. Mater. Sci. 50 949
|
[16] |
Millett P C, El-Azab A and Wolf D 2011 Comput. Mater. Sci. 50 960
|
[17] |
Millett P C and Tonks M 2011 Comput. Mater. Sci. 50 2044
|
[18] |
Millett P C and Tonks M 2011 Curr. Opin. Solid St. M. 15 125
|
[19] |
Millett P C, Wolf D, Desai T, Rokkam S and El-Azab A 2008 J. Appl. Phys. 104 033512
|
[20] |
Tonks M, Gaston D, Permann C, Millett P C, Hansen G and Wolf D 2010 Nucl. Eng. Des. 240 2877
|
[21] |
Millett P C, Tonks M R, Biner S B, Zhang L, Chockalingam K and Zhang Y 2012 J. Nucl. Mater. 425 130
|
[22] |
Li Y, Hu S, Sun X, Gao F, Henager C H Jr and Khaleel M 2010 J. Nucl. Mater. 407 119
|
[23] |
Hu S, Casella A M, Lavender C A, Senor D J and Burkes D E 2015 J. Nucl. Mater. 462 64
|
[24] |
Li Y, Hu S, Montgomery R, Gao F and Sun X 2013 Nucl. Instrum. Method B 303 62
|
[25] |
Hu S Y, Henager C H Jr, Li Y L, Gao F, Sun X and Khaleel M A 2012 Model. Simul. Mater. Sci. Eng. 20 015011
|
[26] |
Hu S Y, Henager Jr C H, Heinisch H L, Stan M, Baskes M I and Valone S M 2009 J. Nucl. Mater. 392 292
|
[27] |
Li Y L, Hu S Y, Henager Jr C H, Deng H, Gao F, Sun X and Khaleel M A 2012 J. Nucl. Mater. 427 259
|
[28] |
Hu S Y, Burkes D E, Lavender C A, Senor D J, Setyawan W and Xu Z J 2016 J. Nucl. Mater. 479 202
|
[29] |
Li D S, Li Y L, Hu S Y, Sun X and Khaleel M A 2012 Metall. Mater. Trans. A 43 1060
|
[30] |
Ding X, Zhao J, Huang H, Ding S and Huo Y 2016 J. Nucl. Mater. 480 120
|
[31] |
Liu W B, Wang N, Ji Y Z, Song P C, Zhang C, Yang Z G and Chen L Q 2016 J. Nucl. Mater. 479 316
|
[32] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[33] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[34] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[35] |
Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
|
[36] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[37] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[38] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[39] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[40] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[41] |
Olsson P, Domain C and Wallenius 2007 Phys. Rev. B 75 014110
|
[42] |
Philipsen P H T and Baerends E J 1996 Phys. Rev. B 54 5326
|
[43] |
Mattsson A E and Armiento R 2009 Phys. Rev. B 79 155101
|
[44] |
Rayne J A and Chandrasekhar B S 1961 Phys. Rev. 122 1714
|
[45] |
Kittel C 1996 Introduction to Solid State Physics, 8th edn. (New York: John Wiley and Sons) pp. 50, 328
|
[46] |
Basinski Z S, Hume-Rothery W and Sutton A L 1955 Proc. Roy. Soc. Lond. A 229 459
|
[47] |
Willaime F, Fu C C, Marinica M C and Dalla Torre J 2005 Nucl. Instrum. Method B 228 92
|
[48] |
De Schepper L, Segers D, Dorikens-Vanpraet L, Dorikens M, Knuyt G, Stals L M and Moser P 1983 Phys. Rev. B 27 5257
|
[49] |
Fu C C, Willaime F and Ordejón P 2004 Phys. Rev. Lett. 92 175503
|
[50] |
Zhang P, Zhao J, Qin Y and Wen B 2011 J. Nucl. Mater. 419 1
|
[51] |
Johnson R A 1964 Phys. Rev. 134 A1329
|
[52] |
Soneda N and Diaz de La Rubia T 2001 Philos. Mag. A 81 331
|
[53] |
Borodin V A and Vladimirov P V 2007 J. Nucl. Mater. 362 161
|
[54] |
Wang H and Li Z 2004 J. Mater. Sci. 39 3425
|
[55] |
Horton L L, Bentley J and Farrell K 1982 J. Nucl. Mater. 108 222
|
[56] |
Hayns M R and Williams T M 1978 J. Nucl. Mater. 74 151
|
[57] |
Norris D I R 1972 Radiat. Eff. 14 1
|
[58] |
Getto E, Jiao Z, Monterrosa A M, Sun K and Was G S 2015 J. Nucl. Mater. 462 458
|
[59] |
Toloczko M B, Garner F A, Voyevodin V N, Bryk V V, Borodin O V, Mel'nychenko V V and Kalchenko A S 2014 J. Nucl. Mater. 453 323
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|