Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114207    DOI: 10.1088/1674-1056/abb660
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Variable optical chirality in atomic assisted microcavity

Hao Zhang(张浩)2, Wen-Xiu Li (李文秀)1, Peng Han(韩鹏)1, Xiao-Yang Chang(常晓阳)1, Shuo Jiang(蒋硕)1, An-Ping Huang(黄安平)1, and Zhi-Song Xiao(肖志松)1,3, †
1 Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 100191, China
2 Research Institute of Frontier Science, Beihang University, Beijing 100191, China
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  

The manipulating of optical waves in a microcavity is essential to developing the integrated optical devices. Generally, the two eigenmodes in a whispering-gallery-mode (WGM) microcavity possess chiral symmetry. Here we show the chiral symmetry breaking is induced by the asymmetric backscattering of counter-propagating optical waves in a whispering-gallery-mode (WGM) microcavity with a cavity-made slot filled with atomic vapor. Through tuning the dispersion relation of the atomic vapor in the cavity-made slot, the chiral modes are continuously steered. The mode frequency splitting in the transmission and reflection spectra stem from the chiral symmetry breaking of the two eigenmodes. The displacement sensitivity of the proposed system in response to the length variation of cavity-made slot exhibits a high sensitivity value of 15.22 THz/nm.

Keywords:  microcavity      optical chirality      dispersion  
Received:  17 May 2020      Revised:  31 August 2020      Accepted manuscript online:  09 September 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11574021, 61975005, and 11804017) and the Fund from Beijing Academy of Quantum Information Sciences, China (Grant No. Y18G28).
Corresponding Authors:  Corresponding author. E-mail: zsxiao@buaa.edu.cn   

Cite this article: 

Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松) Variable optical chirality in atomic assisted microcavity 2020 Chin. Phys. B 29 114207

Fig. 1.  

(a) Schematic diagram of WGM microcavity coupled with (b) cavity-made slot and (c) filled with three-level atomic vapor.

Symbols Meaning
κex external coupling between microresonator and waveguide
κ0 intrinsic loss in the microresonator
γc1,2 cross-coupling rate between CW and CCW waves
r pump rate acting on energy levels |1〉 → |2〉
Ωμ driving field Rabi frequency acting on |1〉 → |3〉
γ decay rate from state |1〉 → |2〉
${R}_{{\rm{slot}}}^{{\rm{CW}},{\rm{CCW}}}$ effective reflectivity of cavity-made slot
${R}_{{\rm{mirr}}}^{1,2}$ reflectivity of slot surface
R0 radius of microresonator
αslot field propagation loss into atomic vapor
aslot propagation amplitude attenuation when light travels through slot
n0 refractive index of microresonator
χ susceptibility of atomic vapor
ω12 transition frequency from |2〉 → |1〉
ωp frequency of probe field
γtotal total loss rate for microresonator
Γslot absorption loss rate of atomic vapor
τ0 optical round-trip time in microresonator
Table 1.  

Simulation parameters.

Fig. 2.  

The slot reflection to the CCW and CW waves varying with the slot surface reflection ${R}_{{\rm{mirr}}}^{1}$ at panel (a) r = 2γ and Ωμ = γ, panel (b) r = 2γ and Ωμ = 2γ, panel (c) r = 0.1 γ and Ωμ = 1γ, and panel (d) r = 0.1γ and Ωμ = 2γ. The length of the cavity-made slot is set to be Lslot = 6 / ω12 which is 3 wavelengths at ω12.

Fig. 3.  

The slot reflection to the CCW and CW waves varying with the pump rate r at panel (a) Ωμ = γ and ${R}_{{\rm{mirr}}}^{1}=0.79$, panel (b) Ωμ = 2γ ad ${R}_{{\rm{mirr}}}^{1}=0.94$, panel (c) Ωμ = 1γ and ${R}_{{\rm{mirr}}}^{1}=0.95$, and panel (d) Ωμ = 2γ and ${R}_{{\rm{mirr}}}^{1}=0.99$.

Fig. 4.  

The IR values adjusted by controlling pump rate r at four optimum values of ${R}_{{\rm{mirr}}}^{1}$ obtained in Fig. 2 when the driving field Rabi frequency is Ωμ = γ.

Fig. 5.  

(a) Transmission and reflection spectra versus Δ ω for four values of pump rate r (0.1γ, 0.2γ, 0.3γ, and 0.4γ) and driving field frequency Ωμ = 7γ. (b) Transmission and reflection spectra versus Δ ω for four values of driving field frequency Ωμ (7γ, 8γ, 9γ, and 10γ) and r = 0.1γ. [(a) and (b)] Insets show magnified details of no shifted peaks of transmission and reflection spectra.

Fig. 6.  

(a) Slot IR representing asymmetric backscattering of cavity-made slot, (b) chirality continuously tuned via steering pump rate r, (c) frequency splitting quality Qsp versus pump rate, with shaded regions representing normal dispersion, and blank regions referring to anomalous dispersion. Some parameters used here are as follows: κ0 = κex = 1 × 1011 Hz, ${R}_{{\rm{mirr}}}^{1}=0.99$, ${R}_{{\rm{mirr}}}^{2}=0.999$, radius of WGM microcavity R0 = 30λ/(2πn0), and refractive index n0 = 1.5.

Fig. 7.  

Curves of frequency split versus Lslot ωp in transmission with (a) driving field frequency Ωμ = 7γ for r = 0.1γ, 0.2γ, 0.3γ, and 0.4γ, and (b) pump rate r = 0.4γ for Ωμ = 7γ, 8γ, 9γ, and 10γ.

[1]
Wiersig J 2014 Phys. Rev. Lett. 112 203901 DOI: 10.1103/PhysRevLett.112.203901
[2]
Redding B Ge L Song Q H Wiersig J Solomon G S Cao H 2012 Phys. Rev. Lett. 108 253902 DOI: 10.1103/PhysRevLett.108.253902
[3]
Peng B Ozdemir S K Liertzer M Chen W J Kramer J Yilmaz H Wiersig J Rotter S Yang L 2016 Proc. Nat. Acad. Sci. USA 113 6845 DOI: 10.1073/pnas.1603318113
[4]
Wang W H Liu S Gu Z Y Wang Y 2020 Phys. Rev. A 101 013833 DOI: 10.1103/PhysRevA.101.013833
[5]
Baaske M D Foreman M R Vollmer F 2014 Nat. Nanotechnol. 9 933 DOI: 10.1038/nnano.2014.180
[6]
Shen B Q Yu X C Zhi Y Y Wang L Kim D H Gong Q H Xiao Y F 2016 Phys. Rev. Appl. 5 024011 DOI: 10.1103/PhysRevApplied.5.024011
[7]
Hill M T Dorren H J S de Vries T Leijtens X J M den Besten J H Smalbrugge B Oei Y S Binsma H Khoe G D Smit M K 2004 Nature 432 206 DOI: 10.1038/nature03045
[8]
Liu L Kumar R Huybrechts K Spuesens T Roelkens G Geluk E J de Vries T Regreny P Van Thourhout D Baets R Morthier G 2010 Nat. Photon. 4 182 DOI: 10.1038/nphoton.2009.268
[9]
Wiersig J Hentschel M 2008 Phys. Rev Lett. 100 033901 DOI: 10.1103/PhysRevLett.100.033901
[10]
Wiersig J Eberspacher A Shim J B Ryu J W Shinohara S Hentschel M Schomerus H 2011 Phys Rev. A 84 023845 DOI: 10.1103/PhysRevA.84.023845
[11]
Shu F J Zou C L Zou X B Yang L 2016 Phys. Rev. A 94 013848 DOI: 10.1103/PhysRevA.94.013848
[12]
Ge L Sarma R Cao H 2015 Optica 2 323 DOI: 10.1364/OPTICA.2.000323
[13]
Sarma R Ge L Wiersig J Cao H 2015 Phys. Rev. Lett. 114 053903 DOI: 10.1103/PhysRevLett.114.053903
[14]
Chen W J Ozdemir S K Zhao G M Wiersig J Yang L 2017 Nature 548 192 DOI: 10.1038/nature23281
[15]
Hodaei H Hassan A U Wittek S Garcia-Gracia H El-Ganainy R Christodoulides D N Khajavikhan M 2017 Nature 548 187 DOI: 10.1038/nature23280
[16]
Kullig J Wiersig J 2019 Phys. Rev. A 100 043837 DOI: 10.1103/PhysRevA.100.043837
[17]
Wang C Q Jiang X F Zhao G M Zhang M Z Hsu C W Peng B Stone A D Jiang L Yang L 2020 Nat. Phys. 16 334 DOI: 10.1038/s41567-019-0746-7
[18]
Xu J P Al-Amri M Yang Y P Zhu S Y Zubairy M S 2012 Phys. Rev. A 86 033828 DOI: 10.1103/PhysRevA.86.033828
[19]
Zhu J G Ozdemir S K Xiao Y F Li L He L N Chen D R Yang L 2010 Nat. Photon. 4 122 DOI: 10.1038/nphoton.2009.289
[20]
Zhang H Li W X Han P Chang X Y Liu J M Huang A P Xiao Z S 2019 J. Appl. Phys. 125 084502 DOI: 10.1063/1.5081505
[21]
Wiersig J 2016 Phys. Rev. A 93 033809 DOI: 10.1103/PhysRevA.93.033809
[22]
Liu R J Su D Q Song Z X Ji Z H Zhao Y T 2019 Chin. Phys. B 28 124201 DOI: 10.1088/1674-1056/ab4d44
[23]
Song Z X Yue X Y Luo Y Li H D Zhao Y T 2019 Chin. Opt. Lett. 17 031901 DOI: 10.3788/COL
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[3] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[4] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[5] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[6] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[7] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[8] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[9] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[10] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[11] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[12] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[13] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[14] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[15] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
No Suggested Reading articles found!