Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088202    DOI: 10.1088/1674-1056/27/8/088202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improved electrochemical performances of high voltage LiCoO2 with tungsten doping

Jie-Nan Zhang(张杰男)1,2, Qing-Hao Li(李庆浩)1, Quan Li(李泉)1,2, Xi-Qian Yu(禹习谦)1, Hong Li(李泓)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

The effects of tungsten W doping and coating on the electrochemical performance of LiCoO2 cathode are comparatively studied in this work. The amount of modification component is as low as 0.1 wt% and 0.3 wt% respectively. After 100 cycles between 3.0 V-4.6 V, 0.1 wt% W doping provides an optimized capacity retention of 72.3%. However, W coating deteriorates battery performance with capacity retention of 47.8%, even lower than bare LiCoO2 of 55.7%. These different electrochemical performances can be attributed to the surface aggregation of W between doping and coating methods. W substitution is proved to be a promising method to develop high voltage cathodes. Practical performance relies on detailed synthesis method.

Keywords:  cathode      lithium-ion batteries      lithium cobalt oxide      doping      coating  
Received:  08 April 2018      Revised:  23 May 2018      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
Corresponding Authors:  Xi-Qian Yu, Hong Li     E-mail:  xyu@iphy.ac.cn;hli@iphy.ac.cn

Cite this article: 

Jie-Nan Zhang(张杰男), Qing-Hao Li(李庆浩), Quan Li(李泉), Xi-Qian Yu(禹习谦), Hong Li(李泓) Improved electrochemical performances of high voltage LiCoO2 with tungsten doping 2018 Chin. Phys. B 27 088202

[1] Lyu Y C, Liu Y L and Gu L 2016 Chin. Phys. B 25 018209
[2] Hou P Y, Chu G, Gao J, Zhang Y T and Zhang L Q 2016 Chin. Phys. B 25 016104
[3] Ohzuku T and Ueda A 1994 J. Electrochem. Soc. 141 2972
[4] Xu Y H, Hu E Y, Zhan K, et al. 2017 Acs Energy Lett. 2 1240
[5] Yano A, Shikano M, Ueda A, Sakaebe H and Ogumi Z 2017 J. Electrochem. Soc. 164 A6116
[6] Zhang J N, Li Q, Wang Y, Zheng J, Yu X and Li H 2018 Energy Storage Mater. 14 1
[7] Wang J, Ji Y J, Appathurai N, Zhou J G and Yang Y 2017 Chem. Commun. 53 8581
[8] Zhang S, Li W J, Ling S G, Li H, Zhou Z B and Chen L Q 2015 Chin. Phys. B 24 078201
[9] Xu K 2014 Chem. Rev. 114 11503
[10] Li H, Wang Z X, Chen L Q and Huang X J 2009 Adv. Mater. 21 4593
[11] Li C, Zhang H P, Fu L J, et al. 2006 Electrochim. Acta 51 3872
[12] Lyu Y C, Ben L B, Sun Y, et al. 2015 J. Power Sources 273 1218
[13] Kim S, Choi S, Lee K, Yang G J, Lee S S and Kim Y 2017 Phys. Chem. Chem. Phys. 19 4104
[14] Luo D, Li G S, Yu C, et al. 2012 J. Mater. Chem. 22 22233
[15] Tabuchi M, Ado K, Kobayashi H, et al. 1999 J. Mater. Chem. 9 199
[16] Valanarasu S, Chandramohan R, Thirumalai J and Vijayan T A 2012 Ionics 18 39
[17] Manthiram A, Knight J C, Myung S T, Oh S M and Sun Y K 2016 Adv. Energy Mater. 6 1501010
[18] Cho J, Kim Y J and Park B 2000 Chem. Mater. 12 3788
[19] Lu Y C, Mansour A N, Yabuuchi N and Shao-Horn Y 2009 Chem. Mater. 21 4408
[20] Sun Y K, Han J M, Myung S T, Lee S W and Amine K 2006 Electrochem. Commun. 8 821
[21] Wang Z X, Liu L J, Chen L Q and Huang X J 2002 Solid State Ionics 148 335
[22] Meng X B, Yang X Q and Sun X L 2012 Adv. Mater. 24 3589
[23] Kalluri S, Yoon M, Jo M, et al. 2017 Adv. Energy Mater. 7 1601507
[24] Zhou A J, Liu Q, Wang Y, et al. 2017 J. Mater. Chem. A 5 24361
[25] Yu X, Hu E, Bak S, Zhou Y N and Yang X Q 2016 Chin. Phys. B 25 018205
[26] Zhao E Y, Yu X Q, Wang F W and Li H 2017 Sci. Chin. Chem. 60 1483
[27] Fey G T K, Muralidharan P, Lu C Z and Cho Y D 2006 Electrochim. Acta 51 4850
[28] Chen Z H and Dahn J R 2004 Electrochim. Acta 49 1079
[29] Hayashi T, Miyazaki T, Matsuda Y, et al. 2016 J. Power Sources 305 46
[30] Hayashi T, Okada J, Toda E, et al. 2015 J. Power Sources 285 559
[31] Yoon S, Woo S G, Jung K N and Song H 2014 J. Alloys Compd. 613 187
[32] Zu C X and Li H 2011 Energ. Environ. Sci. 4 2614
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[5] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[6] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[7] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[8] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[9] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[10] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[11] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[12] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[13] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
No Suggested Reading articles found!