Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097402    DOI: 10.1088/1674-1056/aba2e2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers

Hai-Lin Huang(黄海林)1,2, Liang Zhu(朱亮)1,2, Hui Zhang(张慧)1,2, Jin-E Zhang(张金娥)1,2, Fu-Rong Han(韩福荣)1,2, Jing-Hua Song(宋京华)1,2, Xiaobing Chen(陈晓冰)1,2, Yuan-Sha Chen(陈沅沙)1,2, Jian-Wang Cai(蔡建旺)1,2, Xue-Dong Bai(白雪冬)1,2, Feng-Xia Hu(胡凤霞)1,2, Bao-Gen Shen(沈保根)1,2,3, Ji-Rong Sun(孙继荣)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Grouping different oxide materials with coupled charge, spin, and orbital degrees of freedom together to form heterostructures provides a rich playground to explore the emergent interfacial phenomena. The perovskite/brownmillerite heterostructure is particularly interesting since symmetry mismatch may produce considerable interface reconstruction and unexpected physical effects. Here, we systemically study the magnetic anisotropy of tensely strained La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers with interface structures changing from perovskite/brownmillerite type to perovskite/perovskite type. Without Mn doping, the initial La2/3Sr1/3CoO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3CoO2.5+δ trilayer with perovskite/brownmillerite interface type exhibits perpendicular magnetic anisotropy and the maximal anisotropy constant is 3.385×106 erg/cm3, which is more than one orders of magnitude larger than that of same strained LSMO film. By increasing the Mn doping concentration, the anisotropy constant displays monotonic reduction and even changes from perpendicular magnetic anisotropy to in-plane magnetic anisotropy, which is possible because of the reduced CoO4 tetrahedra concentration in the La2/3Sr1/3Co1-xMnxO2.5+δ layers near the interface. Based on the analysis of the x-ray linear dichroism, the orbital reconstruction of Mn ions occurs at the interface of the trilayers and thus results in the controllable magnetic anisotropy.
Keywords:  perovskite/brownmillerite heterostructure      magnetic anisotropy      orbital reconstruction  
Received:  04 June 2020      Revised:  30 June 2020      Accepted manuscript online:  06 July 2020
PACS:  74.78.Fk (Multilayers, superlattices, heterostructures)  
  75.30.Gw (Magnetic anisotropy)  
  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206300, 2017YFA0303601, and 2018YFA0305704), the National Natural Science Foundation of China (Grant Nos. 11520101002, 51590880, 11674378, 11934016, and 51972335), and the Key Program of the Chinese Academy of Sciences.
Corresponding Authors:  Ji-Rong Sun     E-mail:  jrsun@iphy.ac.cn

Cite this article: 

Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣) Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers 2020 Chin. Phys. B 29 097402

[1] Okamoto S and Millis A J 2004 Nature 428 630
[2] Chakhalian J, Freeland J W, Habermeier H U, Cristiani G, Khaliullin G, van Veenendaal M and Keimer B 2007 Science 318 1114
[3] Zubko P, Gariglio S, Gabay M, Ghosez P and Triscone J M 2011 Annu. Rev. Condens. Matter Phys. 2 141
[4] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[5] Cui B, Song C, Li F, Wang G Y, Mao H J, Peng J J, Zeng F and Pan F 2015 Sci. Rep. 4 4206
[6] Bhattacharya A and May S J 2014 Annu. Rev. Mater. Res. 44 65
[7] Hellman F, Hoffmann A, Tserkovnyak Y et al. 2017 Rev. Mod. Phys. 89 025006
[8] Dieny B and Chshiev M 2017 Rev. Mod. Phys. 89 025008
[9] Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813
[10] Ngai J H, Walker F J and Ahn C H 2014 Annu. Rev. Mater. Res. 44 1
[11] Kent A D and Worledge D C 2015 Nat. Nanotechnol. 10 187
[12] He J, Borisevich A, Kalinin S V, Pennycook S J and Pantelides S T 2010 Phys. Rev. Lett. 105 227203
[13] Rondinelli J M, May S J and Freeland J W 2012 MRS Bull. 37 261
[14] Aso R, Kan D, Shimakawa Y and Kurata H 2013 Sci. Rep. 3 2214
[15] Aso R, Kan D, Shimakawa Y and Kurata H 2014 Adv. Funct. Mater. 24 5177
[16] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425
[17] Kan D, Aso R, Sato R, Haruta M, Kurata H and Shimakawa Y 2016 Nat. Mater. 15 432
[18] Yi D, Flint C L, Balakrishnan P P, Mahalingam K, Urwin B, Vailionis A, N'Diaye A T, Shafer P, Arenholz E, Choi Y, Stone K H, Chu J H, Howe B M, Liu J, Fisher I R and Suzuki Y 2017 Phys. Rev. Lett. 119 077201
[19] Ismail-Beigi S, Walker F J, Disa A S, Rabe K M and Ahn C H 2017 Nat. Rev. Mater. 2 17060
[20] Wang L F, Feng Q Y, Kim Y, Kim R, Lee K H, Pollard S D, Shin Y J, Zhou H B, Peng W, Lee D, Meng W J, Yang H, Han J H, Kim M, Lu Q Y and Noh T W 2018 Nat. Mater. 17 1087
[21] Ding J F, Cossu F, Lebedev O I, Zhang Y Q, Zhang Z D, Schwingenschlogl U and Wu T 2016 Adv. Mater. Interfaces 3 1500676
[22] Zhang J, Zhong Z, Guan X, Shen X, Zhang J, Han F, Zhang H, Zhang H, Yan X, Zhang Q, Gu L, Hu F, Yu R, Shen B and Sun J 2018 Nat. Commun. 9 04304
[23] Zhang J E, Han F R, Wang W, Shen X, Zhang J, Zhang H, Huang H L, Zhang H R, Chen X B, Qi S J, Chen Y S, Hu F X, Yan S S, Shen B G, Yu R C and Sun J R 2019 Phys. Rev. B 100 094432
[24] Behera B C, Jana S, Bhat S G, Gauquelin N, Tripathy G, Anil Kumar P S and Samal D 2019 Phys. Rev. B 99 024425
[25] Liu B, Wang Y Q, Liu G J, Feng H L, Yang H W, Xue X Y and Sun J R 2016 Phys. Rev. B 93 094421
[26] Li J, Wang J, Kuang H, Zhang H R, Zhao Y Y, Qiao K M, Wang F, Liu W, Wang W, Peng L C, Zhang Y, Yu R C, Hu F X, Sun J R and Shen B G 2017 Nanoscale 9 13214
[27] Zhang J E, Chen X X, Zhang Q H, Han F R, Zhang J, Zhang H, Zhang H R, Huang H L, Qi S J, Yan X, Gu L, Chen Y S, Hu F X, Yan S S, Liu B G, Shen B G and Sun J R 2018 ACS Appl. Mater. Interfaces 10 40951
[28] Steenbeck K and Hiergeist R 1999 Appl. Phys. Lett. 75 1778
[29] Steenbeck K, Habisreuther T, Dubourdieu C and Sénateur J P 2002 Appl. Phys. Lett. 80 3361
[30] Yang H W, Zhang H R, Li Y, Wang S F, Shen X, Lan Q Q, Meng S, Yu R C, Shen B G and Sun J R 2015 Sci. Rep. 4 06206
[31] Bruno P 1989 Phys. Rev. B 39 865
[32] Huang H B, Shishidou T and Jo T 2000 J. Phys. Soc. Jpn. 69 2399
[33] Huijben M, Martin L W, Chu Y H, Holcomb M B, Yu P, Rijnders G, Blank D H A and Ramesh R 2008 Phys. Rev. B 78 094413
[34] Tebano A, Aruta C, Sanna S, Medaglia P G, Balestrino G, Sidorenko A A, De Renzi R, Ghiringhelli G, Braicovich L, Bisogni V and Brookes N B 2008 Phys. Rev. Lett. 100 137401
[35] Yi D, Lu N P, Chen X G, Shen S C and Yu P 2017 J. Phys.: Condens. Matter 29 443004
[36] Huang D J, Wu W B, Guo G Y, Lin H J, Hou T Y, Chang C F, Chen C T, Fujimori A, Kimura T, Huang H B, Tanaka A and Jo T 2004 Phys. Rev. Lett. 92 087202
[37] Aruta C, Ghiringhelli G, Tebano A, Boggio N G, Brookes N B, Medaglia P G and Balestrino G 2006 Phys. Rev. B 73 235121
[38] Pesquera D, Herranz G, Barla A, Pellegrin E, Bondino F, Magnano E, Sanchez F and Fontcuberta J 2012 Nat. Commun. 3 1189
[39] Peng J, Song C, Li F, Cui B, Mao H, Wang Y, Wang G and Pan F 2015 ACS Appl. Mat. Interfaces 7 17700
[40] Cui B, Li F, Song C, Peng J J, Saleem M S, Gu Y D, Li S N, Wang K L and Pan F 2016 Phys. Rev. B 94 134403
[41] Bruno P, Magnetismus Von Festkörpern und Grenzflächen 1993 KFA: Jülich Germany, Chapter 24 1-p
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[9] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[10] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[11] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[12] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[13] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[14] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[15] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
No Suggested Reading articles found!