CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers |
Hai-Lin Huang(黄海林)1,2, Liang Zhu(朱亮)1,2, Hui Zhang(张慧)1,2, Jin-E Zhang(张金娥)1,2, Fu-Rong Han(韩福荣)1,2, Jing-Hua Song(宋京华)1,2, Xiaobing Chen(陈晓冰)1,2, Yuan-Sha Chen(陈沅沙)1,2, Jian-Wang Cai(蔡建旺)1,2, Xue-Dong Bai(白雪冬)1,2, Feng-Xia Hu(胡凤霞)1,2, Bao-Gen Shen(沈保根)1,2,3, Ji-Rong Sun(孙继荣)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Grouping different oxide materials with coupled charge, spin, and orbital degrees of freedom together to form heterostructures provides a rich playground to explore the emergent interfacial phenomena. The perovskite/brownmillerite heterostructure is particularly interesting since symmetry mismatch may produce considerable interface reconstruction and unexpected physical effects. Here, we systemically study the magnetic anisotropy of tensely strained La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers with interface structures changing from perovskite/brownmillerite type to perovskite/perovskite type. Without Mn doping, the initial La2/3Sr1/3CoO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3CoO2.5+δ trilayer with perovskite/brownmillerite interface type exhibits perpendicular magnetic anisotropy and the maximal anisotropy constant is 3.385×106 erg/cm3, which is more than one orders of magnitude larger than that of same strained LSMO film. By increasing the Mn doping concentration, the anisotropy constant displays monotonic reduction and even changes from perpendicular magnetic anisotropy to in-plane magnetic anisotropy, which is possible because of the reduced CoO4 tetrahedra concentration in the La2/3Sr1/3Co1-xMnxO2.5+δ layers near the interface. Based on the analysis of the x-ray linear dichroism, the orbital reconstruction of Mn ions occurs at the interface of the trilayers and thus results in the controllable magnetic anisotropy.
|
Received: 04 June 2020
Revised: 30 June 2020
Accepted manuscript online: 06 July 2020
|
PACS:
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.25.Dk
|
(Orbital, charge, and other orders, including coupling of these orders)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206300, 2017YFA0303601, and 2018YFA0305704), the National Natural Science Foundation of China (Grant Nos. 11520101002, 51590880, 11674378, 11934016, and 51972335), and the Key Program of the Chinese Academy of Sciences. |
Corresponding Authors:
Ji-Rong Sun
E-mail: jrsun@iphy.ac.cn
|
Cite this article:
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣) Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers 2020 Chin. Phys. B 29 097402
|
[1] |
Okamoto S and Millis A J 2004 Nature 428 630
|
[2] |
Chakhalian J, Freeland J W, Habermeier H U, Cristiani G, Khaliullin G, van Veenendaal M and Keimer B 2007 Science 318 1114
|
[3] |
Zubko P, Gariglio S, Gabay M, Ghosez P and Triscone J M 2011 Annu. Rev. Condens. Matter Phys. 2 141
|
[4] |
Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
|
[5] |
Cui B, Song C, Li F, Wang G Y, Mao H J, Peng J J, Zeng F and Pan F 2015 Sci. Rep. 4 4206
|
[6] |
Bhattacharya A and May S J 2014 Annu. Rev. Mater. Res. 44 65
|
[7] |
Hellman F, Hoffmann A, Tserkovnyak Y et al. 2017 Rev. Mod. Phys. 89 025006
|
[8] |
Dieny B and Chshiev M 2017 Rev. Mod. Phys. 89 025008
|
[9] |
Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813
|
[10] |
Ngai J H, Walker F J and Ahn C H 2014 Annu. Rev. Mater. Res. 44 1
|
[11] |
Kent A D and Worledge D C 2015 Nat. Nanotechnol. 10 187
|
[12] |
He J, Borisevich A, Kalinin S V, Pennycook S J and Pantelides S T 2010 Phys. Rev. Lett. 105 227203
|
[13] |
Rondinelli J M, May S J and Freeland J W 2012 MRS Bull. 37 261
|
[14] |
Aso R, Kan D, Shimakawa Y and Kurata H 2013 Sci. Rep. 3 2214
|
[15] |
Aso R, Kan D, Shimakawa Y and Kurata H 2014 Adv. Funct. Mater. 24 5177
|
[16] |
Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425
|
[17] |
Kan D, Aso R, Sato R, Haruta M, Kurata H and Shimakawa Y 2016 Nat. Mater. 15 432
|
[18] |
Yi D, Flint C L, Balakrishnan P P, Mahalingam K, Urwin B, Vailionis A, N'Diaye A T, Shafer P, Arenholz E, Choi Y, Stone K H, Chu J H, Howe B M, Liu J, Fisher I R and Suzuki Y 2017 Phys. Rev. Lett. 119 077201
|
[19] |
Ismail-Beigi S, Walker F J, Disa A S, Rabe K M and Ahn C H 2017 Nat. Rev. Mater. 2 17060
|
[20] |
Wang L F, Feng Q Y, Kim Y, Kim R, Lee K H, Pollard S D, Shin Y J, Zhou H B, Peng W, Lee D, Meng W J, Yang H, Han J H, Kim M, Lu Q Y and Noh T W 2018 Nat. Mater. 17 1087
|
[21] |
Ding J F, Cossu F, Lebedev O I, Zhang Y Q, Zhang Z D, Schwingenschlogl U and Wu T 2016 Adv. Mater. Interfaces 3 1500676
|
[22] |
Zhang J, Zhong Z, Guan X, Shen X, Zhang J, Han F, Zhang H, Zhang H, Yan X, Zhang Q, Gu L, Hu F, Yu R, Shen B and Sun J 2018 Nat. Commun. 9 04304
|
[23] |
Zhang J E, Han F R, Wang W, Shen X, Zhang J, Zhang H, Huang H L, Zhang H R, Chen X B, Qi S J, Chen Y S, Hu F X, Yan S S, Shen B G, Yu R C and Sun J R 2019 Phys. Rev. B 100 094432
|
[24] |
Behera B C, Jana S, Bhat S G, Gauquelin N, Tripathy G, Anil Kumar P S and Samal D 2019 Phys. Rev. B 99 024425
|
[25] |
Liu B, Wang Y Q, Liu G J, Feng H L, Yang H W, Xue X Y and Sun J R 2016 Phys. Rev. B 93 094421
|
[26] |
Li J, Wang J, Kuang H, Zhang H R, Zhao Y Y, Qiao K M, Wang F, Liu W, Wang W, Peng L C, Zhang Y, Yu R C, Hu F X, Sun J R and Shen B G 2017 Nanoscale 9 13214
|
[27] |
Zhang J E, Chen X X, Zhang Q H, Han F R, Zhang J, Zhang H, Zhang H R, Huang H L, Qi S J, Yan X, Gu L, Chen Y S, Hu F X, Yan S S, Liu B G, Shen B G and Sun J R 2018 ACS Appl. Mater. Interfaces 10 40951
|
[28] |
Steenbeck K and Hiergeist R 1999 Appl. Phys. Lett. 75 1778
|
[29] |
Steenbeck K, Habisreuther T, Dubourdieu C and Sénateur J P 2002 Appl. Phys. Lett. 80 3361
|
[30] |
Yang H W, Zhang H R, Li Y, Wang S F, Shen X, Lan Q Q, Meng S, Yu R C, Shen B G and Sun J R 2015 Sci. Rep. 4 06206
|
[31] |
Bruno P 1989 Phys. Rev. B 39 865
|
[32] |
Huang H B, Shishidou T and Jo T 2000 J. Phys. Soc. Jpn. 69 2399
|
[33] |
Huijben M, Martin L W, Chu Y H, Holcomb M B, Yu P, Rijnders G, Blank D H A and Ramesh R 2008 Phys. Rev. B 78 094413
|
[34] |
Tebano A, Aruta C, Sanna S, Medaglia P G, Balestrino G, Sidorenko A A, De Renzi R, Ghiringhelli G, Braicovich L, Bisogni V and Brookes N B 2008 Phys. Rev. Lett. 100 137401
|
[35] |
Yi D, Lu N P, Chen X G, Shen S C and Yu P 2017 J. Phys.: Condens. Matter 29 443004
|
[36] |
Huang D J, Wu W B, Guo G Y, Lin H J, Hou T Y, Chang C F, Chen C T, Fujimori A, Kimura T, Huang H B, Tanaka A and Jo T 2004 Phys. Rev. Lett. 92 087202
|
[37] |
Aruta C, Ghiringhelli G, Tebano A, Boggio N G, Brookes N B, Medaglia P G and Balestrino G 2006 Phys. Rev. B 73 235121
|
[38] |
Pesquera D, Herranz G, Barla A, Pellegrin E, Bondino F, Magnano E, Sanchez F and Fontcuberta J 2012 Nat. Commun. 3 1189
|
[39] |
Peng J, Song C, Li F, Cui B, Mao H, Wang Y, Wang G and Pan F 2015 ACS Appl. Mat. Interfaces 7 17700
|
[40] |
Cui B, Li F, Song C, Peng J J, Saleem M S, Gu Y D, Li S N, Wang K L and Pan F 2016 Phys. Rev. B 94 134403
|
[41] |
Bruno P, Magnetismus Von Festkörpern und Grenzflächen 1993 KFA: Jülich Germany, Chapter 24 1-p
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|