Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070702    DOI: 10.1088/1674-1056/ab96a0
GENERAL Prev   Next  

Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV

Fu-Long Liu(刘伏龙)1,2,3, Wan-Sha Yang(杨婉莎)1,2,3, Ji-Hong Wei(魏继红)1,2,3, Di Wu(吴笛)2, Yang-Fan He(何阳帆)2, Yu-Chen Li(李雨尘)2, Tian-Li Ma(马田丽)2, Yang-Ping Shen(谌阳平)2, Qi-Wen Fan(樊启文)2, Chuang-Ye He(贺创业)2, Bing Guo(郭冰)2, Nai-Yan Wang(王乃彦)1,2,3
1 Key Laboratory of Radiation Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 China Institute of Atomic Energy, Beijing 102413, China;
3 Beijing Radiation Center, Beijing 100875, China
Abstract  High energy γ-ray can be used in many fields, such as nuclear resonant fluorescence, nuclear medicine imaging. One of the methods to generate high-energy γ-ray is nuclear resonant reaction. The 19F(p, αγ) 16O reaction was used to generate 6.13-MeV γ-ray in this work. The angular distribution of 6.13-MeV γ-ray was measured by six LaBr3 detectors. The thick-target yield curve of 6.13-MeV γ-ray had been measured. The maximum yield was determined to be (1.85±0.01)×10-8 γ/proton, which was measured by HPGe detector and LaBr3 detector. The absolute efficiency of all the detectors was calibrated using 60Co and 27Al(p, γ) 28Si reaction at Ep=992 keV. The cross section and total resonant width of the reaction were determined to be 95.1±1.0 mb (1 b=10-24 cm2) and ΓCM=2.21±0.22 keV, respectively.
Keywords:  high-energy γ-ray source      thick-target yield      resonant reaction      cross section  
Received:  25 May 2020      Accepted manuscript online: 
PACS:  07.85.Fv (X- and γ-ray sources, mirrors, gratings, and detectors)  
  24.30.-v (Resonance reactions)  
  29.30.Kv (X- and γ-ray spectroscopy)  
  29.40.-n (Radiation detectors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0400502), the National Natural Science Foundation of China (Grant Nos. 11975316 and 11655003), and the Continuous Basic Research Project of China (Grant No. WDJC-2019-02).
Corresponding Authors:  Chuang-Ye He, Bing Guo, Nai-Yan Wang     E-mail:;;

Cite this article: 

Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦) Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV 2020 Chin. Phys. B 29 070702

[1] Smith D L, Ikeda Y and Uno Y 1996 Fus. Eng. Des. 31 41
[2] Smith D L, Maekawa F and Ikeda Y 2000 Fus. Eng. Des. 47 403
[3] Micklich B J, et al. 2000 Proceedings of the 16th Conference on Appl. Accel. Res. Ind., November, 2000, AIP576, Denton, TX, pp. 1-5
[4] Danos m AND Fuller E G 1965 Ann. Rev. Nucl. Sci. 15 29
[5] IAEA 2000 Handbook on Photonuclear Data for Applications: CrossSections and Spectra (International Atomic Energy Agency, Vienna) IAEA Report No. 1178
[6] Cyburt R H, Fields B D, Olive K A, et al. 2016 Rev. Mod. Phys. 88 015004
[7] Arnould M and Takahashi K 1999 Rep. Prog. Phys. 62 395
[8] Woosley S E and Howard W M 1978 Astrophys. J. Suppl. 36 285
[9] Haseltine E 2002 Discover 23 37
[10] Arnould M and Goriely S 2003 Phys. Rep. 384 1
[11] Hara K Y, Harada H, Kitatani F, et al. 2007 J. Nucl. Sci. Technol. 44 938
[12] Kitatani F, Harada H, Goko S, et al., 2010 J. Nucl. Sci. Technol. 47 367
[13] Wiescher M, Gorres J and Schatz H 1999 J. Phys. G: Nucl. Part. Phys. 25 R133
[14] Mateus R, Jesusbc A P, Fonsecabc M, Luís H and Ribeiroac J P 2007 Nucl. Instrum. Methods B 264 340
[15] Okuyama K, Komatsu H, Yamamoto H, Pereira P P N R, Bedran-Russo A K, Nomachi M, Sato T and Sano H 2011 Nucl. Instrum. Methods B 269 2269
[16] Komatsua H, Yamamoto H, Matsuda M, Kijimura T, Kinugawa M, Okuyama K, Nomachic M, Yasuda K, Satoh T and Oikawa S 2011 Nucl. Instrum. Methods B 269 2274
[17] Ajzenberg-Selove F 1987 Nucl. Phys. A 475 1
[18] Bethe H A and Placzek G 1937 Phys. Rev. 51 450
[19] Dang Y L, Liu F L, Fu G Y, Wu D, He C Y, Guo B and Wang N Y 2019 Chin. Phys. B 28 131
[20] Streib J F, FowlerW A and Lauritsen C C 1941 Phys. Rev. 59 253
[21] Bonner T W and Evans J E 1948 Phys. Rev. 73 666
[22] Keszthelyi L, Berkes I, Demeter I and Fodor I 1962 Nucl. Phys. 29 241
[23] Dieumegrad D, Maurel B and Amsel G 1980 Nucl. Instrum. Methods 168 93
[24] Becker H W, Kieser W E, Rolfs C, et al. 1982 Zeitschrift für Physik A: Atoms and Nuclei 305 319
[25] Uhrmacher M, Pampus K, Bergmeister F J, et al. 1985 Nucl. Instrum. Methods B 9 234
[26] Croft S 1991 Nucl. Instrum. Methods A 309 353
[27] Spyrou K, Chronidou C, Harissopulos S, Kossionides S, Paradellis T, Rolfs C, Schulte W H and Borucki L 2000 Eur. Phys. J. A 7 79
[28] Couture A, Beard M, Couder M, Görres J, Lamm L, LeBlanc P J, Lee H Y, O’Brien S, Palumbo A, Stech E, Strandberg E, Tan W, Uberseder E, Ugalde C, Wiescher M and Azuma R 2008 Phys. Rev. C 77 015802
[29] Retz-Schmidt Th 1958 Z. Naturforschg. 13A 833
[30] Wilson W E and Toburen L H 1975 Phys. Rev. A 11 1303
[31] Criswell T L, Toburen L H and Rudd M E 1977 Phys. Rev. A 16 508
[32] Anttila A, Keinonen J, Hautala M and Forsblom I 1977 Nucl. Instrum. Methods 147 501
[33] Fowler W A, Lauritsen C C and Lauritsen T 1948 Rev. Mod. Phys. 20 236
[1] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[2] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[3] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[4] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[5] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[6] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[7] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[8] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[9] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[10] Electron excitation processes in low energy collisions of hydrogen-helium atoms
Kun Wang(王堃), Chuan Dong(董川), Yi-Zhi Qu(屈一至), Ling Liu(刘玲), Yong Wu(吴勇),Xu-Hai Hong(洪许海), and Robert J. Buenker. Chin. Phys. B, 2022, 31(12): 123401.
[11] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[12] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[13] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[14] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[15] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
No Suggested Reading articles found!